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PURPOSE: To analyze the long-term behavior of earth satellites due to the gravita-
tional effects of the sun, the moon, and the oblate earth.

RELATED TO: RAND's continuing study of satellite orbit control requirements for NASA.
The study extends the results obtained in R-399-NASA, Perturbations of a Synchro-
nous Satellite, May 1962.

DISCUSSION AND METHODOLOGY: Now that long-lived earth satellites are orbited on a
relatively permanent basis, it is important to know the effect of long-term or-
bital perturbations, and the cost of controlling them. It is also interesting
to consider the effect of such perturbations on the motion of the increasing
debris in orbit. While the earth's inverse-square law gravitational field is
the major attraction on a satellite, perturbing forces arise from the attraction
of the sun, the moon, and the oblateness of the earth. The resultant force field
is neither central in direction nor inverse-square in magnitude. The components
of the perturbing forces that are normal to the orbital plane perturb the plane's

;;:i&e orientation relative to inertial space. Those

lying in the orbital plane cause changes in
the shape and orientation of the orbit in its
plane. The in-plane motion was analyzed in

R-399-NASA; in the present study emphasis is

on the determination of the orbital plane it-

self. The analysis applies to satellites in
near—-circular orbits at any inclination and
with orbital radii less than 10 earth radii.

The perturbed motion of an uncontrolled satel-

lite is described as seen from inertial space

and as seen from the rotating earth.

PRINCTPAL FINDINGS: The motion of the orbital
plane is such that its normal describes a coni-
cal surface relative to inertial space as shown
in the figure. The ground trace of a synchro-
nous—altitude orbit lying in the reference
plane is a figure eight with crossing-point on
the equator and a maximum latitude excursion of
7020'; this does not vary with time. An orbit
at an angle to the reference plane has a figure-
eight ground trace which varies with the re-
gression period. For a synchronous orbit that
is originally equatorial and "stationary,'" the
ground trace develops from a point to a figure
eight, with a latitude excursion of 14°940' after 26.6 years, and then reverses the
process. The total regression period is about 53 years. A fuel expenditure pro-
portional to the sine of twice the inclination angle relative to the reference
plane is required to stop orbital regression.
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PREFACE

As part of a continuing RAND study for the National Aeronautics
and Space Administration of the perturbations of earth satellites and
resulting orbital control requirements, this Report investigates the
gravitational effects of the sun, the moon and the oblate earth on the
orbital behavior of earth satellites. An extension of the results
obtained earlier in R-399-NASA, the analysis provides determination of
orbital control propulsion requirements and of the orbital regression
of earth satellites with no restriction on orbital altitude or incli-
nation. The general analytical solution for the regression of a satel-
lite obtained in the R can also be specialized to explain lunar re-
gression and the behavior.of low-altitude satellites.

The Report should be of interest to people dealing with satellite

systems which require high-precision long-term orbital control.
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SUMMARY

This Report presents an analysis of the long-term behavior of earth
satellites due to the gravitational effects of the sun, the moon and the
oblate earth. The importance of these effects has increased in recent
years because of interest in more precise orbital control and an increase
in expected payload lifetime. The fuel requirement for maintaining pre-
cise long-term orbital control in the presence of these gravitational
perturbations tends to dominate the overall fuel requirement for orbit
and attitude control. As a result, it is of increasing interest to de-
termine first whether the magnitude of the long-term orbital perturba-
tions of an uncontrolled satellite is compatible with the requirements
of a given satellite mission during its expected payload lifetime. If
the orbital perturbations exceed acceptable values, it is necessary to
investigate methods whereby these perturbations can be controlled,
either actively or passively. 1In addition, it is of interest to con-
sider the effect of these long-term perturbations on the motion of the
increasing collection of debris in orbit. This Report deals with all
of these problems.

The analysis presented here applies to satellites in near-circular
orbits at any inclination and with orbital radii which are small compared
to the radius of the moon's orbit (i.e., less than 10 earth radii). The
formulation takes into account the rotation of the earth around the sun,
the rotation of the earth-moon system about its center of mass and the
regression of the moon's orbital plane about the normal to the ecliptic.

The major effect of the perturbing influences considered is to pro-

duce motion of the orbital plane relative to inertial space. The nature



vi

of this motion can be completely described by the trace of the normal

to the orbital plane on a sphere concentric with the earth. It is shown
that for an orbit of a given radiusban orbital orientation can be found
which remains invariant relative to inertial space. This invariant plane
has a common intersection with the earth's equatorial plane and the plane
of the ecliptic, while its inclination to the latter is always less than
that of the equatorial plane. For low-altitude orbits, the invariant
plane is very nearly equatorial, with an inclination of 23°27' relative
to the ecliptic. As the orbital altitude increases, the value of the
inclination decreases to 16°7' at synchronous altitude and approaches
zero for extremely high orbits.

For an orbit of a given altitude, the trace of the normal to the
invariant plane on the sphere described above is a single point between
the earth's polar axis and the normal to the ecliptic. For orbits of
the same radius but different orientations, two types of motion are pos-
sible. TIf the initial inclination of the orbit relative to the corre-
sponding invariant or reference plane is less than about 800, the normal
to the orbital plane rotates about the normal to the reference plane with
an essentially constant angular rate and inclination angle. The resulting
trace on the sphere is a circle with center on the normal to the reference
plane. If the initial inclination is in excess of 800, the trace of the ~
normal to the orbital plane on the sphere may be an ellipse with its
center on a line in the direction of the vernal equinox and major axis
in the reference plane.

The regression period at zero inclination varies from .l year for
a surface orbit to about 53 years for a synchronous orbit and a maximum

of about 75 years for an orbit of radius equal to 9 earth radii. As the
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inclination increases, the period varies inversely as the cosine of the
inclination angle. On the other hand, the regression period corresponding
to the elliptical contours has a minimum value as the ellipse approaches

a point, and increases toward infinity as the major axis appreaches 90°.
However, since high-inclination orbits are of relatively little interest,
the emphasis in this Report is on the first type of regression, which is
illustrated by the frontispiece.

It should be noted that superposed on this steady-state motion are
oscillatory perturbations in both regression rate and orbital inclination
which cause the instantaneous position of the normal to the orbital plane
to oscillate relative to its steady-state motion. However, it is shown
that the displacement is less than half a degree.

It is of particular interest to observe the effect of this orbital
regression on the relative motion of synchronous altitude satellites as
seen from the rotating earth. Since the orbital altitude is assumed to
be constant, this relative motion is completely described by the trace
of the subsatellite point on the earth's surface.

The reference plane corresponding to a synchronous altitude orbit
has an inclination of 16°7' relative to the ecliptic, as compared with
an inclination of 23°27' for the earth's equatorial plane. Since the
orientation of a synchronous orbit in this plane remains invariant rela-—
tive to inertial space, its inclination of 7020' relative to the earth's
equatorial plane is also invariant. As a result, the trace of the sub-
satellite point on the surface of the rotating earth is the character-
istic figure-eight pattern with a maximum latitude excursion on either

side of the equator equal to the inclination angle of 7°20' relative to
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the equatorial plane. 1In addition, the maximum longitude excursion
relative to the equatorial crossing position is of the order of *15 min
of arc. This ground trace is repeated once each orbit with no variation
in size or shape. Similarly, if the orbital plane of a synchrenous orbit
is perpendicular to the reference plane and polar relative to the earth,
it remains stationary relative to inertial space, and its ground trace

on the rotating earth also repeats itself on each orbit. However, for
such an orbit, the ground trace varies from -90° to +90° in latitude

each day.

For any other inclination of a synchronous orbit relative to the
reference plane, it is found that the maximum latitude or amplitude of
the figure eight varies as a function of time. This is due to the fact
that the maximum latitude is equal to the inclination of the orbit rela-
tive to the equatorial plane, and although the inclination relative to
the reference plane is fixed, that relative to the equatorial plane varies
as the orbit regresses. The resulting variation in the ground trace am-
plitude has a periodicity equal to that of the regression and a magnitude
which can never exceed 14°40'. 1In addition, it is found that the longi-
tude of the equatorial crossing also oscillates with the regression
period and with an amplitude which may be as large as 7020', depending
on the orbital inclination relative to the reference plane. -

In regard to these variations in the size and shape of the ground
trace, it is of particular interest to consider the long-term behavior
of a satellite which is initially in a synchronous equatorial orbit.

Such a satellite is ordinarily referred to as stationary since it appears
to be fixed relative to the earth. However, its orbit is actually in-

clined to its reference plane at an angle of 7°20' and has a regression
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period of about 53 years. As the orbital plane regresses, its inclina-
tion to the equatorial plane increases from 0° at an average initial
rate of .863° per year. At the end of half the regression period this
inclination reaches a maximum of 14040', after which it decreases sym-
metrically to 0° after a complete regression period. Since the maximum
latitude excursion during an orbit is equal to the orbital inclination
to the equator, the resultant ground trace is initially an equatorial
point but develops into a figure eight which reaches a maximum amplitude
of 14°40' before decreasing to the original equatorial point at the end
of the regression period. During this cycle, the position of the equa-
torial crossing oscillates with the regression period with an amplitude
of .470, moving to the east of its initial position during the first
half of the cycle and to the west during the second half. It should be
noted that these variations in longitude are superposed on the shorter
period (~ 2-year) oscillations due to the equatorial ellipticity de-
scribed in Ref. 1.

It is seen that a passive satellite cannot remain truly stationary
relative to the rotating earth, and that its earth trace can remain in-
variant only for certain orbital inclinations. Since a given satellite
mission may require a fixed ground trace which is not inherently in-
variant, it is of interest to determine the amount of control necessary~—
to produce the desired invariance. It is seen that such an invariant
ground trace can exist only if the orientation of the orbital plane re-
mains fixed in inertial space. By applying appropriate control impulses
normal to the orbital plane, it is possible to reduce the steady-state

orbital regression rate to zero. Under these conditions, the orbital



orientation and the resulting ground trace have the desired invariance.
The control impulse required per year to achieve this invariance is pro-
portional to the sine of twice the inclination angle of the orbit to its
reference plane. Thus, the magnitude of the control impulse per year
depends as follows on the desired value of the ground trace amplitude.
For an amplitude of OO, the required control impulse has an average
value of 152 ft/sec/year, which decreases to zero for an amplitude of
7°20', after which it increases to a maximum of 580 ft/sec/year for an
amplitude of 45°. The impulse requirement for amplitudes between 45°
and 90° is a mirror image of that from 0° to 450, decreasing to zero

at 82°40' and increasing again to 152 ft/sec/year at 90°. It should

be noted that these values represent a long-term average control re-
quirement, neglecting the oscillatory components of the orbital re-
gression. 1In the event that it is necessary to control these oscilla-
tory variations, the control requirement in a given year might deviate
from its average value by as much as 30 ft/sec, depending on the ampli-
tude and phase of the oscillatory terms.

If instead of an invariant ground trace, a given mission requires
merely an upper limit on its latitude excursion, it may be possible to
satisfy this condition passively. If the initial orbital inclination
to the equator is made equal to the upper limit of the latitude excur-
sion, then by a suitable choice of the initial regression phase the in-
clination to the orbital plane will decrease to 0° before it again in-
creases to its initial value. -
In this way the time during which the latitude excursion remains

below its upper limit is maximized. If this time is longer than the
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expected payload lifetime, this passive technique can be used to satisfy
the mission requirement. However, the decision regarding the use of
active or passive orbit control depends on the tolerances in ground
trace amplitude and the required mission lifetime.

Finally, the analysis of orbital regression developed here for
artificial satellites is extended to inc;ude the regression of the moon.
This requires an expansion of the basic theory to include higher order

terms as shown in Appendix E.






NCﬂ'ﬂLME@«

~ waoE BLANK

3
xiii
CONTENTS
PREFACE . ¢ i i ittt ittt ettt saesoesaasssssssenanossneesseseeasssasssas iii
SUMMARY - &ttt ittt ittt i et eeeeesensassenasssosesssensuieososeansnsncnennas v
LIST OF FIGURES .« c vt v te e teetteeeenaseneeeneenneennns e XV
LIST OF SYMBOL S . i ittt ettt ittt etasnsesessosseancsenesnossanenennneanens xvii
Section

TI. INTRODUCTION. .ttt ittt it teee ot annsensenosseeeaeseaneenenensnnns 1
TII. METHOD OF ANALY SIS . i ittt ittt et i te st neneseeesesennnenennsenas 3
Statement Of the Problem. .« v.v it ie e reneeenennneneenns 3
Definition Of CoOTdinates .o v . eroeeeeeneneeeeneneenoneness 4
Formulation of the Equations of Motiom............... e 13
Motion of the Orbital Plame.... .o iiierneineeeneeennennens 18
IXII. RESULTS AND DISCUSSION. .ttt it vttt eetnaeesssasosssssasnennnnse 25
Determination of Orbital Regression........cceiiveiinnn.. 25
Application to Synchronous Orbits..........c.ciiiiiiien.n. 32
Orbital Inclination Control.. ... ittt ieneennneennnns 61
IV . CONCLUSIONS . ¢ttt ittt ittt eetesoseeoseseonstseeneeseonssneeas 72

APPENDICES
A. DIRECTION COSINES . ¢ttt ittt tteeseeeseenaseneeotneeennnneeees 75
B. EQUATIONS OF MOTION. .« et utenenutnneenenaaaeeenaeenennnnns 77
C. OSCILLATORY AMPLITUDES -t ¢ttt vttt et anoennesassonnsesoneeenans 93
D. OSCILLATORY DEVIATIONS FROM STEADY-STATE REGRESSION........ 119
E. LUNAR REGRESSION. ...ttt ittt totoeteononostonennssoseneneosens 141
F. REGRESSION OF HIGH-INCLINATION ORBITS .... .t ti vt ennnanns 155
REFERENCE S . ¢t it ittt i ettt eaeneeoennssassassenssasssssssosnensesnens 165

FRECEDING pace &
§ v\&.wugh\:(a PAGE BLA:\K NOT Fi MED
Nt (LN,






23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

X

Propulsion requirement for orbit inclination control..........
Passive orbital control.......iiveeivereternocnnoasnos Cereaaen
Time interval during which latitude is less than Ymo ..........

Reference system for oscillatory deviations of the orbit

normal......cciiiiiiateinaannn cesereane Gttt enaeann ceceoanns

Zero frequency loCi...eeeieieinienneeiennncoiseroscnnnnscons . e

Dependence of a, and b, on W . T.....ieiieerreienoonoesan ceenen
io io i

Dependence of a,, and b, on W, T...ceirieretrioreoceransnsnans
il il i

Drift angle as a function of o (synchronous orbit)..... cresan

Drift angle as a function of o (ro = 4 earth radii)..........

Root-mean-square deviation of the orbit normal as a function

of o (synchronous orbit)........... A, Seereceaaan

Dependence of X,, + Y,, on w,T..vvneieiunnannnannn.. ciereenan
ii ii i

Root-mean-square deviation of the orbit normal as a function

of o (ro = 4 earth radii) .. e iniieiniieeerosseesecnansans
Regression of a synchronous altitude orbit................ . ...
Periods of regression about the x, and z. axes.......ceveeu..n

1 1

Comparison of Eqs. (F-20) and (F-21) for regression period....

67

69

71

120

123

125

126

131

133

135

136

138

158

161

163



LCEDING PAGE BLANK NOT FILMED-

co Iy
PR 2 Wy o g

XV

LIST OF FIGURES

Orbital regressSion. ... v iieeneraacencaannens e et iv
1. Reference SyYSLemS.....eueseeesoesoananuneesesssosssssnsaanans 5
2. Satellite orbital reference system......... et e e 7
3. Lunar orbital reference SyStemM.....oeivevsrvosnonnsocscssns .. 8
L, POSILION VECEOTS e e eeuueseasesassnatosssssasosssonaessonnossns 9
5. Dependence of reference plane inclination on orbital
5= e B Cetese e 26
6. Steady-state orbital regression............ fereee e feeeeees 27
7. Dependence of regression period on orbital inclination
and orbital TadilS..e.eeeeeeeeooonnuoereeeoseonnannonnnnnns 29
8. Determination of conditions for synchronism........ ... 0unn 34
9. Ground trace determination.........ciiuiiiiiiiiiiiaieiiiinataans 37
10. Equatorial crossing geometry.....cccecereressasesnsscnsssonsnas 39
11. Ground trace (orbit in reference plane, @ = L0 42
12. Ground trace (orbital plane normal to reference plane,
o L S TSP 44
0
13. Ground trace (orbital plane initially equatorial,
oy = A7 A T 46
14. Regression of a synchronous equatorial satellite............. 48
15. Ground trace (o = 300 ) it i it et et i e 49
16. Regression of a synchronous satellite (ao =309 .. i 51
17. Maximum latitude as a function of a and T..ceeerernnenoeness 53
18. Maximum latitude as a function of time for an initially
equatorial orbit........ ... ittt eees 54
19. Longitude of equatorial crossing as a function of o, and T... 56
20. Determination of period between equatorial crossings......... 59
21. Period between equatorial crossings as a function of e
2 o e N O 62
22.

Variation of ao if aG is held constant..ee.veeereeeenscnnonas 66



xvii

LIST OF SYMBOLS

th .
amplitude of i oscillatory component of &

o

cz

+x]

Em

=5

Es

ST

=5

SE

=5

Sm

]

control acceleration

constant coefficient of least-squares fit to «

linear coefficient of least-squares fit to o

direction cosines of x axis in the X1s Yq» zl

system

direction cosines of y axis in the X1, Yo %
system

direction cosines of z axis in the X5 Yy Zy

system

th
amplitude of i
constant coefficient of least-squares fit to | sin «

linear coefficient of least-squares fit to { sin o

total angular bias of orbital normal

total angular drift of orbital normal in time T

magnitude of

force

force

force

force

force

force

force

on

on

on

on

on

on

on

the

the

the

the

the

the

the

control force

moon due to the earth

satellite due to the earth

earth due to the moon

satellite due to the moon

earth due to the sun

moon due to the sun

satellite due to the sun

universal gravitational constant

unit vectors of the x, y, z system

unit vectors of the X 5 Yoo zO system

oscillatory component of ¢ sin o



LT_F!I W ™ 0 -]

|

6r

xviii

unit vectors of the xG, yG,

unit vectors of the x , y , 2z
m’ “m’ m

z
G

system

system

unit vectors of the xl, yl, z1 system

oblateness coefficient in the earth's potential

function

mass of the earth

mass of the sun

mass of the moon

mass of the satellite

ratio of the earth's orbital rate to that of the moon

orbital regression rate at zero inclination

oscillatory amplitude factor
mean earth radius

vector from the center of the

sun to the center of

mass of the earth-moon system

vector from the center of the
the earth

vector from the center of the
the moon

perturbation of r
steady-state value of r
vector from the center of the
vector from the center of the
vector from the center of the
unit vector along R
oscillatory amplitude factor
duration of regression

nodical period of the moon

sun to the center of

sun to the center of

earth to the satellite

sun to the satellite

moon to the satellite



ba

Xix

satellite regression period
sidereal period of the moon
time

time for n passages of the ascending node in the
reference plane

time interval between reference plane crossing and
equatorial crossing

velocity increment required from control system
components of the deflection of the orbital normal
linear least-squares fits to X and Y

satellite coordinate system

nonrotating geocentric coordinate system with z
along the earth's polar axis

G
heliocentric inertial coordinate system

lunar coordinate system

nonrotating geocentric coordinate system with z,
normal to the ecliptic

geocentric coordinate system with X1y1 plane in-
clined at an angle al to the ecliptic and X

axis along X

inclination of the satellite orbital plane to the
XY, reference plane

perturbation of «

inclination of the satellite orbital plane to the
earth's equatorial plane

inclination of the moon's orbital plane to the
ecliptic

steady-state value of «

inclination of the x,y, reference plane to the
171
ecliptic

inertial longitude of the satellite



AB

longitude difference between satellite and initial

XX

subsatellite point

inertial longitude of initial subsatellite point
after n crossings of the reference plane

inertial longitude of the satellite at time of
equatorial crossing

value of AB at time of equatorial crossing

current inertial longitude of initial subsatellite

point

satellite latitude

maximum latitude excursion during one orbit

orbital angle
orbital angle
orbital angle

value of © at

of the earth around the sun
of the satellite around the earth
of the moon around the earth

time of equatorial crossing

change in 90 after one orbit

perturbation of 8

earth rotation rate

steady-state orbital angular rate of the satellite

inclination of equatorial plane to the ecliptic

perturbation of the magnitude of I

steady-state magnitude of P

initial value

vector from the center of the earth to the center

of the moon

vector from the center of the earth to the

of 6p

of mass of the earth-moon system

combined root-mean-square deviation

root-mean-square deviation of X from X

center



Sw

Xx1i

root-mean-square deviation of Y from Y
arbitrary time interval

difference between equatorial crossing period and
nodical period

nodical period of the satellite

satellite orbital regression angle

lunar regression angle

value of y after n reference plane crossings

value of ¥ at time of equatorial crossing

increase of ¢O after one orbit

perturbation of &

regression rate of the satellite at zero inclination

regression rate of the satellite in the presence of
orbital control forces

steady-state regression rate of the satellite

component of the moon's angular velocity normal to
its orbital plane

perturbation of w

th
oscillatory frequency of the i component in either
@ or ¥ sin @

steady-state value of w
initial value of dw
vector angular velocity of the earth around the sun

vector angular velocity of the moon relative to in-
ertial space

vector angular velocity of the x, y, z system rela-
tive to inertial space






I. INTRODUCTION

In the ten years since the launching of the first Sputnik, a rather
impressive amount of hardware has been placed in orbit around the earth
in the fulfillment of various satellite missions. During the early years
of this period, the lifetime of a given satellite mission was short and
there was little interest in precise long-term orbital control. However,
in recent years, as technology has developed which can take advantage
of precisely controlled synchronous orbits with long-life potential, it
has become important to know (1) the effect of long-term orbital per-
turbations on the satellite mission, and (2) the cost of controlling
these perturbations.

It is well known that if the only force on a satellite is the in-
verse-square-law gravitational attraction of the earth, then the re-
sulting orbit is an ellipse with one focus at the earth's center. 1In
addition, the direction of the normal to this orbital plane remains
fixed relative to inertial space. While the earth's inverse-square field
is the major attraction on the satellite, it is necessary to consider
the perturbing forces which might produce long-term changes in the basic
orbital motion described above. Three such forces are those due to the
attractions of the sun and the moon and that arising from the oblateness
of the earth. Since the resultant force field when these effects are i;:
cluded is neither central in direction nor inverse-square in magnitude,
the resulting orbital perturbations may be of two types. Those components
of the perturbing forces which are normal to the orbital plane produce
perturbations in the plane's orientation relative to inertial space.

Those components which lie in the plane cause alterations in the shape



and orientation of the orbit in its plane.

In Ref. 1, the effects of the sun and the moon on a satellite in
a synchronous equatorial orbit are determined. The results show that
the in-plane perturbations are of the nature of small amplitude oscil-
lations in the satellite's position relative to its nominal unperturbed
position. The maximum excursion is of the order of 45 mi. It is also
found that the perturbations in the attitude of the orbital plane are
of the nature of a slow change in its inclination to the equatorial
plane at a rate of about .850/year. The analysis also indicates a slow
sinusoidal increase to a maximum inclination of about 20° and a return
to 0° after a period of about 73 years. However, these two values are
only approximate, since a 20° angle exceeds the small angle assumption
used in the perturbation analysis.

This Report gives a more general determination of the orbital per-
turbations resulting from the gravitational attractions of the sun and
moon and from the oblateness of the earth, and it places no restriction
on the magnitude of the orbital inclination. The emphasis is primarily
on the determination of the motion of the orbital plane since it is not
anticipated that the in-plane motion will differ greatly from that de-
termined in Ref. 1. By means of the analysis presented here, the per-
turbed motion of an uncontrolled satellite is described both as seen frem
inertial space and as seen from the rotating earth. 1In addition, the fuel
requirement to maintain a fixed orientation of the orbital plane relative

to inertial space is determined.



II. METHOD OF ANALYSIS

STATEMENT OF THE PROBLEM

The problem to be solved in this Report can be stated as follows:
If a satellite is in a circular orbit around the earth with a known
initial orientation of its orbital plane relative to inertial space,
determine the motion of this orbital plane as it is affected by the
gravitational attraction of the sun, the moon and the oblate earth.

For the purposes of this analysis it is assumed that the orbital
altitude is sufficiently high that forces due to residual drag can be
neglected. 1In addition, by assuming a small area-to-mass ratio for the
orbiting object, the effects of solar radiation pressure can also be
neglected. The ellipticity of the earth's equatorial section is also
omitted since its effect on orbital regression is negligible.

Finally, the positions of the sun and the moon relative to the earth
are specified as known functions of time according to the following model.
The center of mass of the earth-moon system moves on a circular orbit
around the sun with a period of one sidereal year, and the plane of the
motion is that of the ecliptic.* The earth and moon rotate about their
common center of mass with a constant separation and a period of one
sidereal month. The plane of this rotation is inclined at an angle of
5°8' to the ecliptic and regresses about the normal to the ecliptic

with a period of 18.6 years.

*

Strictly speaking, the plane of the ecliptic is defined by the
motion of the earth's center of mass; however this differs in orienta-
tion by about 1 sec of arc from the plane defined above.



DEFINITION OF COORDINATES

Reference Systems

In the formulation of the equations of motion and the description
of the resulting motion, it is convenient to define the following ref-
erence systems.

Xgs Yoo Zg- This is an inertial reference system with its origin

at the center of the sun; its XgYg plane is the ecliptic and its Xg axis

is in the direction of the earth at the time of the vernal equinox.

Xy Yoo Zg¢ This and all the remaining reference systems are geo-

centric. This particular one maintains its axes parallel to the corre-

sponding ones in the x system. Thus, every point of this sys-

s’ Ys* %g

tem is under a constant acceleration in a direction parallel to the earth-

sun line. The unit vectors associated with this and the previous sys-

tem are represented as i s E , kK .
o o 0

X1 yl, zl. This system is rotated relative to X 5 Yoo %, through

an angle al about their common x axes as shown in Fig. 1. This system

is the one relative to which the motions of the orbital plane are ex-

pressed. The appropriate value of o, is determined in the course of the

1
analysis. The associated unit vectors are represented as Il’ 31, El'
xG, yG, zG. This system has a common x axis with the two previous

systems, while the x plane is the earth's equatorial plane, which

el
makes an angle A = 23°27" with the ecliptic or XY, plane as shown in

Fig. 1. The associated unit vectors are represented as Ié, Eé, kG.
X, ¥, z. This is the orbital coordinate system with the x axis
passing through the satellite and the xy plane representing the instan-

taneous orbital plane. The orientation of this system relative to the
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xl,.yl, z1 system is specified by the three angles o, § and 8 as shown
in Fig. 2. The angle @ is the angle between the xy (orbital) plane
and the X191 (reference) plane. The angle | is the regression angle
measured from the x, axis to the line of nodes, ON. Finally the angle

1

© is the orbital angle measured from the line of nodes to the x axis.
The associated unit vectors are represented as I, E, k.

It should be noted that an additional relation between o, | and
® is required to insure that the xy plane is indeed the instantaneous
orbital plane. This relation is determined in the derivation of the
equations of motion.

xm, ym, zm. This is the lunar reference system in which the xm
axis passes through the center of mass of the moon and the X Yo plane
represents the moon's orbital plane. The.orientation of this system
relative to the X s Yoo 2 system is specified by the three angles am,
wm and Gm as shown in Fig. 3, where it is seen that these angles are
analogous to o, ¥ and 6 for the satellite orbital system. As before,

the associated unit vectors are represented as im, jm, "
The direction cosines relating these various systems are listed

in Appendix A.

Position Vectors

The relative positions of the sun, moon, earth and satellite can
be described vectorially as shown in Fig. 4, in which the various vec-

tors are defined as follows.









Earth-moon center
of mass

Fig.4— Position vectors
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The vector R is from the center of the sun to the center of mass
of the earth-moon system. In accordance with the assumed motion of this
system around the sun,

R = er = R(1O cos @ + j, sin ®) (1)

where R is constant and equal to the earth's orbital radius, while ®
varies linearly with time.
The vector 3; is from the center of the earth to the center of the

moon and lies along the X axis. It can be expressed as
p =0 i (2)

where s is a constant and equal to the earth-moon separation.
The vector r is from the earth's center to the satellite along the

x axis and can be expressed as
T = ri (3)
where r is the magnitude of r and is one of the orbital variables to be

determined.

In addition to these basic vectors, it is convenient to define cer-

tain others that are of use in the formulation of the equations of
motion, although they can be expressed in terms of those already de-
fined. The vector Eﬁ from the earth's center to the center of mass
of the earth-moon system can be expressed as
—_ 1 —
= = 4
P =5 % (4)
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where
+ M
B 5

and ME and Mm are the masses of the earth and moon respectively.

The vector ﬁﬁ from the sun's center to the earth's center is

given by

R, =R -5, (6)

The vector R[n from the sun's center to the moon's center is given by

O )

The vector ;S from the sun's center to the satrellite is expressed as

— - 1_ -—
=R - = +
rg R m Py r (83
The vector ;m from the moon's center to the satellite is given by
r =T - P €))

Angular Velocity Vectors
The relative motion of the various coordinate systems defined pre-

viously can be expressed in terms of the following angular velocity

vectors.
The angular velocity, EE, of the center of mass of the earth-moon

system around the sun can be expressed as
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@, = ® kO (10)

where ® is a constant equal to .0172 rad/solar day. This corresponds
to a period of one sidereal year.

The angular velocity, ZR, of the earth-moon system about its center
of mass and relative to inertial space is given by the expression

“n emkm + wmko (11)

where ém is the moon's orbital rate of .22998 rad/solar day, corresponding
to a period of one sidereal month, while ém is the regression rate of the
moon's orbital plane and has a value of -9.249 x 10_4 rad/solar day,

corresponding to a period of 18.6 years.

The angular velocity Eﬁ of the earth about its axis is given by

8. = B k (12)

where éE is equal to 6.3004 rad/solar day, corresponding to a period of

one sidereal day.

The orbital angular velocity, a%, of the satellite around the earth's

center relative to inertial space is expressed in terms of the three or-

bital angles as follows

p—

w = Yk, + @ (T, cos ¥ + 3, sin ¥) + ok (13)

where ¢, o and 9 are the orbital variables to be determined together

with r.
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FORMULATION OF THE EQUATIONS OF MOTION

The derivation of the equations of motion of the satellite relative
to the earth is presented in this section in abbreviated form; the de-
tails are given in Appendix B.

The equations of motion of the satellite, the earth and the moon

relative to inertial space can be expressed in vector form as follows

= = 1 = = FSs + Fms + FEs
Satellite: Ig = R - ; o +r = Ms (14)
. . . F._+F
- -— 1 - SE mE
Earth: R =R - m G (15)
. . . F. +F
Moon: R =R+ (1 - l) p = Sm__ Em (16)
m Lo o Mm

In this derivation the dot notation for time derivatives signifies
a derivative relative to inertial space, while d/dt is a derivative re-
lative to the orbital (x, y, z) reference system. In addition, the sub-
scripts S, E, m and s refer to the sun, the earth, the moon and the -
satellite, respectively. When they are used with M, the mass of the
body they represent is indicated. When they are used with a vector

force, F, the first subscript determines the attracting body, while the

second defines the body on which the force acts.
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The vector equation of motion of the satellite relative to the earth

is obtained as the difference between Eqs. (14) and (15) in the form

= FSS + F s + FEs FSE + FmE
r = M - (17)

An evaluation of the forces on the right reduces Eq. (17) to the follow-

ing form

3J2R§ _
+ > (r - kG) kG
r
sl ER (r - P,) Py
pO
-@2;-3_2(;.§>§ (18)
R

where R0 is the earth's equatorial radius, G is the universal gravita- -
tional constant and J2 is the coefficient of the oblateness term in the
earth's potential function.

The three component equations of motion corresponding to the x, y

and z axes are obtained from Eq. (18) in the form
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- r@2[1 - 36, 'i')z] (19)
3J2GMER§ —_—
( ) = - r4 (kG i) (kG i)
3ré§l -
+ -1 G -3
+38°E D G, - D (20)
3J GMER2
= = 2 o = ™ =
(r'k)=-7——(kc-1) (kG-k)
3r.62 _ — _
+ um(im-i) (i -k
+ 3rr;)2(¥1 ‘D GE B (21)
The quantity ; is given by the relation
(22)

a’r dr d.(Bo - - - -
+2[wo XE]+[TExr]+[wo X [u)o Xr]]
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from which the left sides of Eqs. (19), (20) and (21) can be expressed

as

T 1) = §—§-+ r[(ﬂ% D@ - E%)] (23)

D (R K@ D G - D @2

= = dr — - dzg - - - =
(r - k) = - 2 It (ug - j) - r<_3? . j) + r(wo - 1) (ub - k) (25)

At this point, it is necessary to determine the constraint equation
which insures that the xy plane is the instantaneous orbital plane.
This condition requires that T as well as T must lie in the xy plane.

This can be satisfied if

(r - k)=0 (26)

from which it follows that
(w . 3) =0 (27)

and
dub

(7)o (28)
Thus, Eqs. (23), (24) and (25) can be simplified to the form

2

(?.I)-ia{--r(mo-i)z

(29)
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G -D-i3[P@ 0] (30)
(:1% - k) = r(&o - 1) (Too - k) (31)
where
(Zg - 1) = § sin 0 sin o + & cos 6 (32)
(Zg j) = § cos 8 sin o - & sin 8 (33)
(Eg . E) = & cos o + 6 (34)

The complete equations of motion of the satellite are obtained

by combining Eqs. (19)-(21), (27), (29) and (30)-(34) to give

2
2 3J R
.d_..%-r(é+1[:cosa)2=—GM§- 2GME°[1-3(EG.'{)2]
dt r 2r
52
m r ~ 2
e[, 7
- r®2[1 - 3@, - I)z] (35)
1 d[ 2,5 . 3J2GMERc2>————
;E[r(9+¢cosd)]=-T(kG-i)(kG'j)
Bréz

S CURERES I U )

+ 3r@2('r'1 D & oD (36)
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2
3J,GM_R
¥ = - ?ME° (EG-i)(kG-k)cose
(8 + ¥ cos a)r
362 o
+ - .m (i -+ i) (i + k) cos 8
m(8 + | cos @) "
%l - - = =
+ — - (r1 - i) (r1 « k) cos 6 (37)
(6 + § cos «)
3J GMER2
@ = - — - 2 05 (Eé - 1) (Eé - k) sin 0
(6 + ¢ cos o)r sin o
382 -
+ — G . 1) (G -k sin g
p(® + ¢ cos o) sin « " n
3% - T . T
+ - (r1 - i) (r1 . k) sin 9 (38)

(6 + § cos @) sin «

These four equations constitute the desired orbital equations of motion

in terms of the variables r, 6, o and ¥.

MOTION OF THE ORBITAL PLANE -~

The exact solution of the equations of motion as presented above
does not appear feasible since the terms resulting from earth oblate-
ness, the sun and the moon are rather involved functions of the unknowns
r, 9,  and y. To simplify the problem, it is assumed that the quan-
tities r, é, a and & can be represented as follows by a steady-state

value plus a perturbation.
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= + 6r 39
8 = 6, * 66 (40)
b=+ o (41)
o= a + S (42)

Since the forcing terms due to earth oblateness, the sun and the moon
in Eqs. (35) through (38) are in the nature of perturbations, it is

assumed that in these terms r, 8, ¥ and o can be replaced by their

steady-state values, while 0 and ¥ are expressed as

=06t (43)
y =¥t (44)
In addition, it is assumed that 8 is much greater than &, and that

the nominal orbit is circular. Thus, the steady-state values of r and

8 are given by

r = (45)
2 22 P
8 = Go r3 (46).-
o

With these assumptions, Eqs. (37) and (38) can be written as
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3J2R§éo o
o= - -——?—— (kG - i) (kG - k) cos 8
o

352
m

(.i-m . I) (-i‘m . k) cos ©

MGO

362

]
o}

(r

L 1) (-1-:1 - k) cos 8 47)

) 3J2R§éo o
1]! = - —2————— (kG ¢ 1) (kG * k) sin @
rosul czo

32

+—“l—(i «+ i) (i + k) sin ©
s . m m
0 sin o
(o] [0}

367 - = = .z
+ —— (rl - i) (r1 - k) sin 8 (48)

sin o
eo o

thus giving & and \1: as functions of time.
If the direction cosines tabulated in Appendix A are substituted

in Eqs. (47) and (48), they can be reduced to the form

127
o = 2 Ai sin wit (49)
i=1
127
. 1 z
LA N P~ = B, cos w.t (50)

~ i=1
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The details of this transformation are presented in Appendix C together
with a tabulation of the resulting expressions for the w_, Ai and Bi
values, as well as for &o'

An examination of this tabulation shows that the wi values are

linear combinations of the frequencies 90, 9 s @, #m and éo' In the

case of Ai and Bi’ they may be functions of any or all of the quantities

oy Oy s Go, L J2, ® and Bm. The presence of J2 in a given ampli-

tude indicates that this term is at least partially the result of earth
oblateness. Similarly, ® and ém indicate contributions due to the sun
and the moon, respectively. Thus, it is seen that the steady-state re-

gression rate, *o’ as well as the first seven oscillatory terms are the
result of a combination of all three perturbing influences. On the
other hand, those terms for which 8 € 1 € 22 are entirely due to solar
influence, while the rest of the terms (23 < i < 127) are due to the
moon.

The solutions for o and § can now be obtained by integrating Eqgs.

(40) and (50) to give

= o + 31 fi [1 - cos w,t] (51)
o [o] Lo W - i
. i
i=1
. . 127 B,
et T L B ot ot 32
o i=1 i

under the assumption that at t = 0, o = o, and § = 0.

It is now necessary to define the angle al between the reference

X,¥,) plane and thé plane of the ecliptic since the quantities & ’
171 1 o
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Ai and Bi are all functions of al. The selection of @, is dictated by
the fact that the analysis leading up to Eqs. (51) and (52) is based on
the assumption that‘the angle o between the orbital (xy) plane and the
reference (xlyl) plane remains essentially constant and equal to ao.

In view of this fact, a value of al should be selected which mini-
mizes the amplitudes of the oscillatory terms in Eq. (51). Particular
emphasis should be placed on the low-frequency terms because of the
factor l/wi' An examination of the Ai expressions in Appendix C shows
that the only reasonable choice for 01 is that value which makes Al’
the coefficient associated with the frequency, ¢o’ identically zero,

as follows.

62 5 2J2é§R§
[1 + ——23 (2 - 3 sin Qh)] sin 2a1 -5 sin 2(\ - al) =0 (53)
20 ® r,

which can be solved for o, in the form

1
27.5%R?
200
3 5 sin 2A
® ro
tan 2o, = . - , (54)
1 62 23 878"
1+ —2- (2 - 3 sin” « ) + cos 2X
«2 22 2
2u8 9T

This selection of o also makes the amplitudes A, , A6, Bl’ B4 and B6

identically zero since they all have the left side of Eq. (53) as a

factor.

In addition, the amplitudes A2, A3, A7, B2, B3 and B7 all involve

the factor f, given by
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é2
f= [1 + ——EE (2 -3 sin2 a )] sin2 o
Zu@ m 1

R 2
—5 5 sin O\ - al) (55)
(o]

While no choice of @, can make the factor f vanish, the value de-

termined by Eq. (54) does minimize f since

é2
%ﬁ_ = [1 + —-$5 (2 - 3 sin’ o )] sin 2 o)
oy 2u0 m
2J2é§R§
- = gin 2 (A - a.) (56)
2 2 1
® r0

which is equal to zero from Eq. (53) .

By the same type of reasoning it can be shown that this choice of
oy maximizes the amplitudes A5 and B5 associated with the frequency, Zéo.
However, this is a high-frequency term with a very small amplitude.

Thus, it causes very little change in the inclination angle, <.

With the determination of @y it is now possible to use Eqs. (51)
and (52) to describe the resulting motion of the orbital plane. 1In
Appendix D it is shown the remaining oscillatory terms result in less

than a .5° variation in the normal to the orbital plane. Thus, to a very

good approximation, the motion of the orbital plane is represented by
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a=a 7

o= ¢t (58)

which means that the orbital plane maintains a constant inclination, o s
relative to the selected reference plane but regresses about the normal

to the reference plane at a steady rate of éo given in Appendix C as

. 3@2 cos « éz 2 2
b= - ——|[1+ 25 @ -3¢ a) | (2 -3 sin® o)
o . 2 m 1
86 2u0
o
2J2é§R§ 5
+=222T2 - 36t (A - ap)] (59)

.2 2 1
® r

Thus, the motion of the orbital plane is completely described by
Eqs. (54), (57), (58) and (59).
In obtaining the above result, it was assumed in Eq. (44) that ¥
could be replaced by &ot in Eqs. (37) and (38). However, an examination
of Eqs. (50) and (59) shows that as the orbital inclination, o approaches
900, the above assumption is no longer valid, since io approaches zero
and Eq. (50) is dominated by the oscillatory terms. -
In Appendix F, the behavior of these high-inclination orbits is in-
vestigated in more detail. It is found that the representation of the
motion as described by Eqs. (57) through (59) is a good approximation of
the actual motion as long as the regression takes place about the z,

axis.
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IITI. RESULTS AND DISCUSSION

DETERMINATION OF ORBITAL REGRESSION

On the basis of the analysis presented in the previous section, it
is now possible to make a quantitative determination of the orbital re-

gression rate and its axis of rotation.

Reference Plane

An examination of Eq. (54) shows that the inclination, « of the

1°
reference plane is a function of orbital radius. The relationship is
shown in Fig. 5, which gives @y aé a function of r- It is seen that

for low-altitude orbits, for which the earth's oblateness is the dominant
perturbing influence, the reference plane is very nearly coincident

with the earth's equatorial plane (a1 = 23027'). This is due to the

fact that the equatorial plane is one of symmetry for the oblateness
effect. Similarly, for high-altitude orbits, for which the combi-
nation of the solar and lunar effects becomes dominant, the reference

plane approaches the plane of the ecliptic (al = 00). Again, this is

due to the symmetry of these two effects relative to this plane.

Steady-State Motion

The steady-state regression of the orbital plane as specified by
Eqs. (57) and (58) is represented in Fig. 6, in which the normal to the
orbital plane (the z axis) maintains a fixed angle, o s with respect to

the normal to the reference plane (the z., axis). At the same time, the

1

z axis rotates about zy at an angular rate wo’ tracing a circular contour

on the spherical surface as shown. The residual oscillatory terms
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Fig.5— Dependence of reference plane inclination on orbital radius
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in Eqs. (51) and (52) cause small variations in this trace, but, as
shown in Appendix D, these residual oscillatory terms are negligible.
While the z axis maintains a fixed angle, ao, relative to the z,

axis during its regression, it is seen from Fig. 6 that the angle aG

between the z axis and the earth's polar axis (the z axis) varies be-

G

tween the limits

%, s Iao - (A - a1)| (60)
min
and
o, A G 011) (61)
max

Thus, ac, which represents the inclination of the orbital plane to the
earth's equatorial plane, will vary slowly as a result of the regression

about the z1 axis.

The regression period, the time required for the z axis to make one

complete rotation about z is given by the relation

1’

(62)

By combining Eqs. (54), (59) and (62), TR can be determined as a function
of the constant orbital inclination, o relative to the reference plane
and the orbital radius, ro- This relationship is shown in Fig. 7. It

is seen that in general the period increases as the orbital inclination
increases, becoming infinite for @ equal to 90°. The period also in-
creases with orbital radius, but appears to reach a maximum in the vicinity

of 10 earth radii. Presumably, this is due to the increase in the effect
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of the sun and moon and to the corresponding decrease in the effect of
earth oblateness at this altitude.

The numerical values of the regression period range from .099 year
for a surface orbit at zero inclination to 52.84 years for a similar
inclination at synchronous altitude. At a given altitude, the period
for an inclination, o s is obtained by dividing the zero inclination

period by cos @

Special Cases

It is of interest to examine certain special cases of the expres-
sion for the orbital regression rate given by Eq. (59).

Earth Oblateness. If the oblateness of the earth is the only

perturbing influence, its effect is given by setting ® and ém equal

to zero in Eqs. (54) and (59). Under these conditions, Eq. (54) gives
a value of al equal to A. Thus, the reference plane is the earth's
equatorial plane, and the regression takes place about the earth's

polar axis. Under these same conditions, Eq. (59) reduces to

3J2R§éo
wo = - 5 COs o (63)
2r
o
which is the usual form for the regression due to oblateness. (See

Ref. 2.)

Sun and Moon. If the effect of the earth's oblateness is negligible,

as in the case of large orbital radii, J2 can be set equal to zero, with
the result that the angle dl from Eq. (54) becomes zero. Thus, the refer-

ence plane becomes the plane of the ecliptic, and the resulting regression
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takes place about the normal to the ecliptic. The regression rate as

given by Eq. (59) reduces to

. 3@2 cos o Béi (2 -3 sin2 Qﬁ) cos o
b= - — - . (64)
49 86

where the first term is the solar effect and the second is that due to
the moon. Numerical evaluation shows that the regression rate due to
the moon is approximately twice that due to the sun.

Lunar Regression. The expressions developed in the previous sec-

tion can also be used to determine the regression of the moon itself due
to the influences of the earth's oblateness and the sun's gravitational

attraction. As applied to the moon, Eq. (59) can be restated in the

following form:

. 3@2 cos o JzezRg
¢,=______m[1+ B2 2 - 3 sin W) ] (65)
n : 22

48 Op

where the first term in the bracket is due to the solar effect and the
second term is that resulting from the earth's oblateness. Actually,

the oblateness term is negligible, and Eq. (65) can be rewritten as

- 387 cos o . 3é2
¢m s -/ = - = (66)

46 40

m m

By means of this relation, the regression period of the moon is found
to be 17.9 years instead of the accepted 18.6 years. The reason for

this discrepancy is that Eq. (66) does not include the higher order
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terms which are necessary in calculating the orbital regression rate of

the moon. If these are included, Eq. (66) then has the form

2 . .\ 2
c 39 3 ®> 91 ( @)
= |13 (- " 32\ (67)
46 : §
m m m

and the regression period based on this relation is the accepted 18.6

years. The details of the derivation of Eq. (67) are given in Appendix E.
While Eq. (67) is necessary in explaining the behavior of the moon,

where the ratio @/ém is of the order of 1/13, the higher order terms are

negligible in the case of artificial satellites, for which this ratio

is of the order of 1/365 or less. Thus, Eq. (66) is adequate for the

purposes of this Report.

APPLICATION TO SYNCHRONOUS ORBITS

While the foregoing determination of orbital regression applies
for any orbital altitude, the discussion will now be limited to syn-

chronous altitude orbits.

Condition for Synchronism

From Eqs. (54) and (59), it is seen that for a synchronous alti-
tude orbit (r0 = 26195.2 mi) the inclination of the reference plane,
s is equal to 1607', while the steady-state regression rate is given

by

&0 = §(0) cos o (68)
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where &(O) has a value of -3.257 X 10_4 rad/solar day. 1In the case

of an unperturbed equatorial satellite, synchronism is achieved by set-
ting the orbital angular rate, éo’ equal to the earth's spin rate relative
to inertial space, éE' Under these conditions the satellite remains
stationary above a fixed point on the equator. If this same unperturbed
satellite is placed in an orbit with an inclination aG relative to the
equatorial plane, it is obvious that the subsatellite point can no longer

remain fixed since it must vary in latitude between +o_ and —aG during

G
each orbital period. However, if the orbital angular rate is again set

equal to © the resulting ground trace of the subsatellite point is a

E°
fixed curve on the rotating earth. This curve is in the form of a figure
eight with its crossing point on the equator. Thus, although the satel-
lite itself is no longer stationary relative to the earth, it's ground
trace pattern is.

If perturbations are also considered with the resulting regression
of the orbital plane, it is necessary to modify the orbital angular rate
to compensate for this regression. The appropriate orbital angular rate
can be determined from Fig. 8. This figure shows the intersections with
the earth's surface of the reference, equatorial and orbital planes. 1t
is assumed that the orbital plane is initially in the position indicated
by the dotted line and that the initial subsatellite point coincides with
Xg- At the end of a time tn required for n crossings of the reference
plane, the subsatellite point is at Sn at an angular distance wn from
X In this same time the point A on the earth, which was the initial
subsatellite point, is displaced from X by an angular distance Bn. The

quantities tn’ Wn and Bn can be expressed as follows
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Fig.8 — Determination of condition for synchronism
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2ntT
t = = (69)
n n

eO
o= oty (70)
B = éEtn - 2nm (71)

where éo is the orbital angular rate to be determined. If the orbital
angular rate is adjusted so that Bn is equal to ¢n, then the subsatellite
point and A will be coincident whenever the orbital plane passes through
the X axis (i.e., at intervals of half the regression period). The con-
dition that Bn equals Wn can be expressed by combining Egs. (69) through

(71) to give
eo B eE B wo (72)

With this value of orbital angular rate the resulting ground trace is
again a figure eight. However, as will be seen, its size and its posi-
tion relative to the rotating earth are no longer constant. Although
neither the satellite nor its ground trace are stationary relative to
the earth, synchronism is maintained since the motion of the ground
trace pattern in longitude has no secular terms. Thus, Eq. (72) repre—
sents the condition for synchronism in this case.

From Eq. (72), it is seen that the desired synchronous orbital
angular rate depends on the orbital inclination through @0. However,

this variation in 60 corresponds to a change of the order of .2 mi

in orbital radius. This change in L is negligible insofar as the



36

determination of either @ or wo is concerned.

Determination of the Ground Trace

The geometry for the determination of the satellite ground trace
is shown in Fig. 9, where the angle B is the inertial longitude of the

satellite measured from the Xy axis and Y is the satellite latitude.

The unit vector i along the satellite radius vector can be ex-

pressed relative to the Xio yG, zG coordinate system in the form

1= (cos ¥y cos B) i

o + (cos vy sin B) Eé + (sin vy) Eé (73)

The same unit vector can be expressed relative to the x z_ system

1’ 710 A

as

i=ai, +b j, +ck ' (74)

where a s bX and c, are given in Appendix A.

1f Eq. (74) is projected into the x z_ system it becomes

¢’ Yo %c

i = ax1G + [bx COS(}\, - al) + CX Sln()\ - Otl)J jG

+ [- bX sin(A - al) + y cos(A - al)] Eé (75)

By equating components of Egs. (73) and (75), the following ex-

pressions for B and ¥ are obtained.

b cos(h - o) + ¢ sin(A - a))
tan B = % LSO L (76)

a
X
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sin y = - bX sin(A - al) + . cos(\ - al) (77)

In Fig. 10 it is assumed that initially the orbital plane passes
through X, and the satellite is at S The figure then represents the
geometry at some later time, T, corresponding to some integral number
of equatorial crossings. S represents the satellite position and A
is the current position of the initial subsatellite point. The value
of 60 can be expressed in terms of ¢O by setting v equal to zero and

replacing { and 8 by wo and 60 in Eq. (77). Solution of the resulting

expression gives

sin Wo sin(A - al)

tan 0 = — -
o sin o cos(A - al) - cos @ cos wo sin(A - al) (78)

where

b, o= 4T (79)

From Fig. 10, it is seen that the reference plane crossing im-

mediately prior to T occurs at time T - to’ where
eo
to = — (80)
8 —
o

and 60 is given by Eq. (72).
If t is the time elapsed since this reference plane crossing,

then the general expression for ¥ in Fig. 9 is given by

\lf=d}o (T -t +¢t) (81)
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Orbital plane

X,
\ Vo N Reference plane

Equatorial plane

Fig.10— Equatorial crossing geometry
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The angle 6 in Fig. 9 can also be expressed as
9 = eO(T -t + t) - 2nm (82)

where n is the number of orbits completed at the time of reference

plane crossing. Since n is given by

é(T-t)
O O
"SI (83)

Eq. (82) can be expressed as
6 =20t (84)

If Bl represents the current inertial longitude of the initial sub-

satellite point, A, it can be expressed as

= ¢ - + -
Bl SE(T to t) 2nT (85)
Elimination of éo and n between Egs. (72), (83) and (85) gives
Bl = eEt + ¢O(T - to) (86)

If Eqs. (72), (8l), (84) and (86) are combined, the following value

for Bl is obtained:

Bl =0+ (87)

The longitude of the satellite relative to the reference point A on the

rotating earth is given by



4l

(88)

while its latitude is equal to ¥. The relative longitude, AB, and the
latitude, Y, can be computed as a function of t by means of Eqs. (76)-
(81), (84), (87) and (88).

For a given value of T, a determination of AB and Y versus t over
one orbital period determines the ground trace on the rotating earth.
By taking various values of T over one regression period, the effect
of the phase of the regression can be shown for various initial orbital
inclinations as follows.

Orbit in Reference Plane. 1In this case, the determination of AB

and vy can be simplified considerably since o is zero and t0 is equal

to T. Thus, Egs. (76), (77), (87) and (88) become

tan B = cos(h - al) tan éEt (89)

sin v = - sin(\ - al) sin éEt (90)
Bl = GEt (%1)
AB = B - Bl (92)‘_

The resulting plot of v versus AR is shown in Fig. 11, where it is seen

that the maximum value of latitude is equal to A - o, or i7020‘, which

1
is the inclination of the orbital plane to the equatorial plane. Since
the time T does not appear in Egs. (89) through (92), the ground trace

as shown will contine to repeat since this particular orbit remains fixed

in inertial space.
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Orbital Plane Normal to Reference Plane. 1In this case, the equa-

tions for the determination of AP and Y are simplified by setting ao
o I3
equal to 90 . Under these conditions, the ground trace is determined

by the following relations:

sin(A - al) sin eEt + cos(h - al) sin ¢O cos GEt

tan B = - (93)
cos ¢O cos GEt
sin y = - sin(X - al) sin wo cos eEt + cos(M - al) sin GEt (94)
=06t -0 +

Bl GEt 90 wo 95)
tan 60 = sin wo tan(\ - al) (96)

As shown in Appendix F, WO may oscillate about a value of either 90°

or 2700, with an amplitude less than 90° and a period greater than

269 years. -

By means of these equations, the ground traces shown in Fig. 12
have been computed for wo equal to 00, +90° and 180°. It is seen that
as |¢O| increases from 0° to 180o the amplitude of the figure eight in-
creases from 90 - (A - al), or 82040', to 90 + (A - al), or 102°40'. At

the same time the maximum latitude ranges from 82°40" at ]¢0' equal to 0°
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,82°40" north latitude

Fig.12— Ground trace (orbital plane riormal to reference plane, a, = 90°)
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to 90° when |v_| equals 90°, and back to 82°40' for |¥_| equal to 180°.
The longitude variations for [wo[ < 90o are oscillatory in nature, but,
for Iwol > 900, the longitude AP increases monotonically. This is due
to the fact that the ground trace encircles the earth's axis in a
negative sense for these latter conditions.

It should be noted that only the ground trace for ¢o equal to 90°
is actually fixed relative to the earth. Those corresponding to other
initial values of wo are subject to large amplitude oscillations in
longitude.

Orbit in Equatorial Plane. In this case the orbital plane is

initially in the earth's equatorial plane, with @ set equal to A - a5
which is equal to 7°20". From Eq. (59), it can be shown that the or-

bital regression rate is equal to -3.231 X 10_4 rad/solar day, which
corresponds to a regression period of 53.249 years. The ground trace

can now be determined by means of Eqs. (76) through (78). Since the

trace changes as the orbit regresses, the computation is made at five-

year intervals in T up to 25 years. The resulting patterns are presented
in Fig. 13, where it is seen that during the first half of the regression
period the ground trace grows from a single point to a figure-eight pat-
tern which attains its maximum size after half of one regression period.

At this time, the ground trace has dimensions of +14°40" in latitude and
+1° in longitude. 1In addition to the variation in size of the earth trace,
its equatorial crossing moves relative to the origin, which is the initial
subsatellite point. During the first half of the regression period, the
equatorial crossing moves to the east, reaching a maximum displacement

o
of about .6, which then decreases to zero after half the regression

period. The behavior of the ground trace during the second half of the
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regression period is the reverse of that just described in that the
pattern decreases in size and degenerates to a point at the end of one
regression period. Also, the equatorial crossing drifts toward the west,
reaching a maximum displacement of .6° and returning to 0° at the end
of the regression period. The behavior of the ground trace during the
second half of the regression cycle is a mirror image of that shown in
Fig. 13.

If the geometrical representation used in Fig. 6 is adapted to this
case, the relationship between the z, z., and z, axes and the trace of the

1

z axis on the reference sphere is shown in Fig. 14. Since @ and A - al

are equal, the earth's polar axis intersects the z axis trace. Also, the
arc of the great circle through z and Ze is a measure of the instantaneous

inclination, ab, of the orbit relative to the earth's equatorial plane.
Thus, as the z axis moves around its trace, the value of Qb varies from

0° at z to a maximum of 2(A - al) or 14°40' at a point diametrically

opposite to z This instantaneous value of @ 6 is equal to the maximum

G’ G
latitude excursion of the ground traces of Fig. 13.

Orbit at an Arbitrary Inclination. As an example of the general

behavior of an inclined synchronous orbit, a value of 30° for o is
selected. This inclination corresponds to a regression rate, ﬁo’ of
-2.821 X 10_4 rad/solar day, which results in a regression period of —
60.98 years. The resulting earth traces at five-year intervals up to 30
years are shown in Fig. 15. It is seen that initially the characteristic
figure-eight pattern has an amplitude in latitude of @ - (A - al) or

22%40" . During the first half of the regression period, this amplitude

o
increases to a maximum equal to ao + (A - dl) or 37 20'. During this time
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the equatorial crossing point, which is initially at the origin, drifts
in an easterly direction, reaching a maximum of about 20, after which the
drift reverses and the crossing point returns to 0° at the end of one-
half of the regression period. As in the previous case, the behavior of
the ground trace during the second half of the regression period is a
mirror image of that during the first half.

The relationship of the z, zq and z, axes is shown in Fig. 16 for
this case. It is seen that the instantaneous orbital inclination, aG,
relative to the equatorial plane lies between o - (A - al) and
o + (A - al), which are also the limits of the maximum daily latitude
excursions of the ground traces of Fig. 15. 1In general, this relation-
ship can be stated as

|ab - (x - al)l S oL <o + (A - al) (98)

Size and Position of the Ground Trace

It is seen from the previous examples that the size and position
of the ground trace are functions of both the orbital inclination, o s
and the time. 1In order to describe these variations, it is convenient to
determine both the maximum latitude of the ground trace and the position
of the equatorial crossing as functions of o and time.

p—

Variation of Maximum Latitude. Since the maximum latitude during

a single traversal of the ground trace is equal to the inclination, %

of the orbit to the equatorial plane, this maximum latitude, Y,> ©an be

expressed as

cos y_ = x - kG) (99)
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ﬁr o

Fig.16 — Regression of a synchronous satellite (ag = 30°)
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which can be expressed from Appendix A as
cos y = cos o cos(h - a;)

+ sin o sin(x - al) cos (100)

where

V=T (101)

and ¢o is given by Eq. (59).

The dependence of Ym on T and ao is shown in Fig. 17, where T has
been normalized by dividing by TR. It is seen that the maximum possible
variation of Yo for a given value of o is 14°40'. 1In addition, for
those contours for @ > 82040', the central portion corresponds to orbits
which encircle the earth's pole in a negative direction.

A further examination of Fig. 17 shows that, with the exception of
the contour for o, = Ao @1 all of the @ contours have a zero slope at
T = 0. However, for o = Ao- oy the slope is .8630° per year, which also
represents the initial rate of éhange of the orbital inclination relative
to the equatorial plane.

Figure 18 shows both this wvariation of Ym for ao equal to A - al,
and the equivalent curve from Fig. 10 in Ref. 1. It is seen that the
present analysis gives a value of 53.249 years for the period of the lati-

) .
tude variation and a maximum amplitude of 14 40', compared with the wvalues

of 73.6 years and 20° obtained by the more approximate methods of Ref. 1.
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Equatorial Crossing Position. The variation in the position of the

equatorial crossing point as a function of time and orbital inclination
can be determined as follows. At the time of equatorial crossing, the

inertial longitude of the satellite can be obtained from Eq. (76) in the

form
cos GO sin ¢ cos(K—al)
+ sin 6 rsin o sin(h-o,) + cos o cos(h-a,)cos ¥ )
: ol o 1 o 1
tan B = - - (102)
o cos O cos § - sin 6 cos o sin |
o o o o o
Elimination of GO between Eqs. (78) and (102) gives
sin ¥ sin o
tan B = 2 2 (103)
o - cos o sin(h - al) + sin ao cos(h - al)cos wo
The longitude of the initial subsatellite point is given by Eq. (87)
as
= 104)
Bl = 8 * g (104)

Thus, the longitude difference between the current equatorial crossing

and the initial subsatellite point is given by

AB =B -8 -1 (105)

(@] O o

By means of Eqs. (79), (103) and (105), ABO can be computed as a function
of @ and the time T. The resulting relation is shown in Fig. 19, where
T has been normalized as in Fig. 17. 1t is seen that the resulting sur-
face is such that for a given value of ao the quantity ABO has a maximum

at approximately one-quarter of the regression period and a minimum at
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about three fourths of this period. The value of this maximum ranges
from zero at o equal to 0° to approximately A - al at ao equal to
90°. The exact expression for this maximum and its time of occurrence
can be found by differentiating Eq. (l05) with respect to time and

equating to zero. This results in

e K—al feos o + cos(K—al)
1 8 sin - sin 3 2
AB = tan (106)
O ax [3 cos(K-al) + 3 cos @ - cos a_ cos(h-al) -»fj
and
_ o A - o
“—[.]I;.E‘5 = E%T‘ cos 1 L- tan —22 tan <—2—1->] (107)

It is seen from Eq. (107) that the maximum occurs very slightly past
one-quarter of the regression period. In a similar manner it can be
shown that the minimum of ABO has a magnitude equal to the negative of
Eq. (106) and a time of occurence given by Eq. (107) as slightly before
three-quarters of the regression period. Contours for these maxima and
minima are shown in Fig. 19.

It should be noted that Fig. 19 applies only to regression about
the zy axis and that the effect would actually be superposed on the
shorter period oscillation due to equatorial ellipticity described in

Ref. 1.

Period Between Equatorial Crossings

The nodical period is defined as the time interval between crossings

of the reference plane at the ascending node and is given by
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7= (108)

However, the period between successive equatorial crossings is not
necessarily equal to To when orbital regression is present. The amount

of this deviation from T, can be determined as follows. Figure 20 shows
the position of the orbital plane at the times of two successive crossings
of the equatorial plane. If these two crossing times are T and

T + o + AT, then the associated values of { are ¢o and wo + Awo, and
those for 0 are 60 and 60 + AGO. The value of the increment Awo is given
by

My = ¥ (T + AT) (109)

On the other hand, since the angle O increases by approximately 27 be-
tween two equatorial crossings, the angle AGO can be determined from the

relation

6, A@O =6 + GO(TO + AT) -~ 2m (110)
which together with Eq. (108) gives
Aeo = BOAT ({ll)

. . O
At the time of the first equatorial crossing, T, the latitude is 0 .

Thus, substition of wo and 60 for ¥ and 8 in Eq. (77) gives

- sin(\ - al) [cos 6, sin ¢ + sin 90 cos § _ cos aO]

+ sin 60 sin ao cos(\ - al) =0 (112)
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(1)

(2)

T+ 1,+07

Equatorial plane / \

Reference plane

Fig.20—Determination of period between equatorial crossings
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Similarly, at the time, T + s + 4T, of the next equatorial crossing,
the latitude is again Oo, and the substitution of wo + A¢o and 90 + AGO

for ¥ and © in Eq. (77) gives a second relation of the form
- sin(A - al) [cos(eo + Aeo) sin(q;o + A¢o)
+ sin(8 + 88 ) cos(¥_ + &Y ) cos ao]
+ sin(e0 + AGO) sin A cos(h - al) =0

(113)

By expanding Eq. (113) for small values of Aeo and Awo and subtracting

Eq. (112), the following relation between Aeo and Awo is obtained.

(s _ i -
AGO L(81n 90 sin Wo cos 60 cos *o cos ao) sin(A al)

+ cos 60 sin @ cos (A - dl)]

+ AWOECOS 60 cos wo - sin eo sin ¥, cos do] sin(A - al) =0 (114)

Elimination of AGO and Awo between Eqs. (109), (111) and (114) gives the

following solution for AT.

A - ono sin(x-al) [— cos o sin(h—al) + sin @ cos(K-al) cos *o]

; . 2 , 2
90[51n wo sin (K-al) + sin @ cos(x-al)
. 2
- cos o 31n(X—a1) cos ¢o) ]

+ &o sin(x-al) [cos o sin(x-al) - sin o cos(l-al) cos *o]

(115)
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where ¢0 is given by Eq. (79).

Figure 21 shows the relationship between AT, o and T specified by
Eq. (115). It is ssen that the period between equatorial crossings dif-
fers from To by only a few seconds for most values of o and T. However,
in the vicinity of the singularity at o, = A - oy and T = 0, AT can be
appreciable since under these conditions the orbital plane and the equa-
torial plane are very nearly coplanar and the position of equatorial

crossing can shift very rapidly.

ORBITAL INCLINATION CONTROL

In the preceding discussion it has been shown that in the absence of
any control forces the characteristic figure-eight ground trace may have
long period variations in size and position due to orbital regression.

For many applications it may be desirable to limit these variations.

This is particularly true of the excursion in latitude where, for coverage
reasons, it may be necessary that the satellite latitude excursion be re-
stricted. This sort of control can be accomplished in two ways, the

most obvious being to apply control forces in such a way as to reduce

the orbital regression rate to zero, with the result that the orbital
plane remains fixed in inertial space and the ground trace remains fixed
in size and position on the earth. The other method of control is passive
and is achieved by injecting the satellite into orbit in such a way that
even in the presence of regression the period during which the latitude

remains less than a given value is maximized.
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Active Control

In connection with this method it is of interest to determine the
amount of propulsion required to reduce the regression rate to zero
thus fixing the ground trace relative to the earth.

If it is assumed that a control force FCz is applied in the =z
direction perpendicular to the orbital plane, Eq. (21) has an additive
term of the form Fcz/Ms on its right side, and the resulting expression

for the regression rate corresponding to Eq. (48) becomes

2.
3I,R6,

- G

- 1) (EG - k) sin 8
r sin o
(o] (o]

352

m - N /T . T .
t———— (i * 1) (G k) sin 8
w8 sin o
o o)

<2
+ 30 (r, - i) (r, « k) sin 8
. , 1 1
6 sin o
o o

FCz sin 9§
+ . (116)
M B8 sin «o
s 0 o

The resulting steady-state regression in the presence of the force .

FCz is given by

T
jomxda (117)
o

where T is a time large compared to any of the oscillatory periods

associated with &. Combination of Eqs. (116) and (117) gives
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T

§o=i 1 f F__ sin 6 dt (118)
rMOT sin « o

os o 0

To reduce the steady-state regression rate, ¢C, to zero, it is necessary

that

3|

T

j a sin 6 dt = - r 8 ¢ sin « (119)
cz 0 0'0 o

o

where a_, is the control acceleration perpendicular to the orbital plane.
From the form of Eq. (119), it is seen that accelerations applied

when 6 is 90° are more effective in controlling the regression rate.

Thus, it is assumed that the control consists of a single impulsive

force applied each time 6 is equal to 900. Under these conditions the

left side of Eq. (119) represents the required velocity change per unit

time, AVZ/T, so that
- roe wo sin o (120)

Combination of Eqs. (59) and (120) gives

AV 3ro@2 sin 200 éi 9 ) —
Tz = TE [1 + — (2 - 3 sin ah)] (2 - 3 sin al)
2u8
23, 8%>
2 o o

-+

@ [2 -3 sin (A -« )]( (121)
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Thus, the propulsion requirement as specified by Eq. (121) depends only
on the inclination angle, @ relative to the reference plane.

Since the orbital inclination angle, aé, relative to the equatorial
plane determines the maximum latitude excursion of the satellite, aG is
the parameter which would be specified. The geometrical relationship
be tween aG and @ is shown in Fig. 22, where it is seen that @ varies
depending on the position of the z axis on the constant aG contour.
However, ao ranges between extremal values of (A - al) + a_ and

G
(h - al) - e These values occur when v, is equal to 0° and 180° re-
spectively. Thus, the propulsion requirement is also bounded by the

expressions obtained by substituting the above extremal values for o

in Eq. (121). The propulsion requirement can then be expressed as

—— = F, sin 2(h - o) + o) (122)

where F0 is the amplitude of Eq. (121) and the use of the plus or minus
sign is determined by which of the two gives the smaller absolute value

for AVZ/T. The propulsion requirement as a function of % is shown in

Fig. 23, where the solid lines represent the minimum condition speci-
fied.

It is seen that for o, equal to zero (equatorial orbit) the propul~

sion requirement is 151.9 ft/sec/year, which is in good agreement with

the value of 150 ft/sec/year obtained in Ref. 1. For o equal to 7°20',

the orbit lies in the reference plane and remains there by definition.
Thus, there is no propulsion required for orbital control. As o in-

creases, the propulsion requirement reaches a maximum of 580.4 ft/sec/year

when g equals 45°., Although Fig. 23 indicates a zero value for the
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Reference axis

Polar axis

Fig.22 — Variation of ay if ag is held constant
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propulsion requirement when o, equals 82040', this orientation is of
little interest since the orbit is in unstable equilibrium, as shown in
Appendix F. However, on the basis of Appendix F, there is a second
stable orbital orientation with the orbital plane perpendicular to the
direction of the vernal equinox. This orbit also has a zero propulsion

requirement.

Passive Control

In this method of ground trace control it is necessary to select an
initial phase of the regression cycle such that the latitude excursion
is bounded for a maximum period of time. To accomplish this, use is
again made of the reference sphere as shown in Fig. 24, where the circle
about zZg is a locus of constant o, and thus constant ym as defined in

G

Eq. (100). The circle about z, is the path of.the z axis as the orbit

1
regresses. If the z axis is initially at A, then the maximum latitude
excursion will remain less than its initial value, Yoo during the time

it takes the z axis to regress from A to B. This time can be obtained

by solving Eq. (100) for T to give

9 1|98 Yy - COS @ cos (A al)

T = = cos - (123)
. sin o sin(A - o.)
¥, o} 1

By differentiation of Eq. (123) it can be shown that for a given value

of vy  the maximum value of T occurs when o is given by

mo

cos(A - al)

cos Ymo

(124)

cos o =
(o}
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In obtaining Eq. (124) the dependence of ¢O on o is neglected since

only values of @, less than A - @, are considered. The resulting ex-

pression for the maximum value of T becomes

1| N2 sinO - Fy ) sin(h - oy -y )

T = %L cos

m Wo sin(h - al) (125)

In Fig. 25, Tm is plotted as a function of the maximum permissible lati-

tude, Yo It is seen that for o equal to A - s Tm reaches a value

of 26.4 years.

For values of vy greater than A - ¢o,, T 1is infinite since the
mo 1 m

Y contour of Fig. 24 encloses the z4 axis, which is one of the naturally
stable positions for the z axis.

Thus, for any given satellite application, if the specifications
of maximum permissible latitude variation and minimum acceptable life-
time are represented by a point to the left of the curve in Fig. 25,
then it is necessary to use an active control system with its associ-

ated propulsion requirements as shown in Fig. 23.
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IV, CONCLUSIONS

As a result of the analysis presented in this Report, the follow-
ing general conclusions can be stated regarding the effects of the sun,
the moon and the oblateness of the earth in perturbing satellites in
nominally circular orbits.

o For a given orbital radius, an orientation of the orbital
plane can be found which remains essentially constant relative
to inertial space under the influence of the assumed per-
turbing forces.

o The plane of the ecliptic, the earth's equatorial plane and
the constant reference plane defined above have a common line
of nodes, and the inclination of the reference plane relative
to the ecliptic is less than that of the equatorial plane,
the exact value being a function of orbital radius.

o If an orbit is inclined relative to its reference plane at
an angle less than 79°, its orbital plane will move in such
a manner that its inclination relative to the reference plane
remains essentially constant while its line of nodes in the
reference plane regresses at a steady-state angular rate pro-
portional to the cosine of the inclination angle.

o A highly elliptical type of regression can take place about
the direction of the vernal equinox if the inclination of the
orbit exceeds 79°.

o In addition to the steady-state motion, there are a large num-
ber of oscillatory terms in both inclination angle and re-
gression angle. These result in an oscillation in the direction
of the normal to the orbital plane of less than .5° relative
to its steady-state motion.

In addition to these general conclusions, which apply to orbits_of
any radius, certain others are reached which apply only to synchronous
altitude orbits regressing about the normal to the reference plane

0 The reference plane for a synchronous altitude orbit has an

inclination of 16°7' relative to the ecliptic and -7°20' rela-
tive to the equatorial plane.

0 The regression period of a synchronous orbit is 52.81 years at

an inclination of 09 and varies inversely as the cosine of the
inclination angle, ao’ relative to the reference plane.
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The ground trace of an orbit lying in the reference plane is
a figure eight with crossing point on the equator and a maxi-
mum latitude excursion of 7920'. This trace is invariant in
size and location as a function of time.

An orbit inclined to the reference plane has a ground trace
which is also a figure eight, but both its maximum latitude
excursion and its equatorial crossing point undergo oscillatory
variations with a period equal to the regression period.

In the case of a synchronous orbit which is initially equatorial,
it is found that the ground trace develops from a point to a
figure eight with a latitude excursion of 14940' after 26.6 years
and then shrinks back to a point after another 26.6 years.

To stop the orbital regression and thus fix the satellite ground
trace requires a fuel expenditure proportional to the sine of
twice the inclination angle relative to the reference plane.
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Appendix A

DIRECTION COSINES

. PRECEDIiiG
PAGE BLANK

The following tables present the direction cosines relating the

unit vectors of the various coordinate systems defined in the body of

the report.
REFERENCE COORDINATE SYSTEM
- = x
Yo 1o 0
i) 1 0 0
Jl 0 cos oy sin al
k1 0 - sin ) cos oy
EQUATORIAL COORDINATE SYSTEM
- - r
! 1 1
i 1 0 0
ia 0 cos(Ar - al) sin(\ - al)
kG 0 - sin(A - al) cos(A - al)




76

SATELLITE ORBITAL SYSTEM

i k
1 1 1
— | &, = cos B cos bX = cos O sin = sin 0 sin o
i
- sin © cos @ sin + sin 8 cos o cos §
_ la_ = - sin 6 cos § b = - sin 6 sin = cos 6 sin o
3 y y
- cos B cos o sin ¥ + cos B cos « cos
k a = sin o sin { bz = - sin o cos 1 = cos o
LUNAR ORBITAL SYSTEM
i j k
o Jo o
a = cos O cos | b = cos 6 sin | c = sin 8 sin «
T Xm m m Xm m m m m
m , . .
- sin 8 cos o sin § |+ sin 6 cos o cos §
m m m m m m
a = - sin 8 cos y§ b = -sin 8 sin y c__=cos B sin «a
7 ym m m | ym m m m m
m . —
- cos 8 cos o sin § [+ cos B cos o cos
m m m m m m
k a = sin o sin § b = - sin a cos § c = cos «
m i zm m m zZm m m m
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Appendix B

EQUATIONS OF MOTION

In the body of this Report, the equations of motion of the satellite,

the earth and the moon relative to inertial space are given in Eqs. (14),

(15) and (16) in the form

= Fés ms Es
. . = + + -
Satellite: T v v v (B-1)
s s s
.. F F
Earth: RE = ﬁig + ﬁgg (B-2)
.. F F.
Moon: X o= .om, Em -3
Rm M M (B-3)
m m

The vector equation of motion of the satellite relative to the earth is
obtained as the difference between Eqs. (B-1l) and (B-2) as given in

Eq. (17) and below

gLk - (B-4)

Similarly, the vector equation of motion of the moon relative to the earth

is given by the difference between Eqs. (B-2) and (B-3) as

o = - (B-5)

Finally, the vector equation of motion of the center of mass of the earth-

moon system relative to inertial space is obtained as follows. The
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position of the center of mass is located by the vector R, which is de-

fined by the relation

(ME * Mm) R = MEﬁﬁ * Mmﬁg (B-6)

Elimination of RE and Rm between Eqs. (B-2), (B-3) and (B-6) gives the

desired equation for center of mass motion as

F_+F +F +F
FSE FSm FEm FmE

Mg T My,

w2
]

(B-7)

GRAVITATIONAL ATTRACTIONS

The various gravitational forces involved in the foregoing equa-

tions are evaluated as follows.

Force of the Sun on the Satellite

The force FSS can be expressed as
FSs N r3 s (B-8)
S
where
- _ P, _
= - — -
ro R m r (B-9)

The magnitude of ;é is then given to first order as

pO

r§ -2 s 2(r -+ R) - 2<u_ . i) (B-10)
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from which the inverse cube term can be expressed by a binomial ex-

pansion as

=R—3[1-—-§-(r-R)+——<—'R>_| (B-11)

a
wv wir

Substitution of Egs. (B-9) and (B-11) in Eq. (B-8) gives

GM_M - P _ _ o
Ss = 2 R - 7% +r - ;% (r - R)R
R R
°
_1(_0.—)—7
+ 5\ R RJ (B-12)
R
) 2, 2
neglecting terms of the order of r /R™.
Force of the Moon on the Satellite
The force FmS is given by
= GMmMs
Fms = - 3 (B-13)
T
m
where
r o= - oo + r (B-14)

From these relations the first-order expansion for FmS is obtained in

the same manner as above in the form

_ MM .~ _  _ 3(p, *7T)_
= - =22 | - —_— -14
F o 3 [ Pt T 5 po] (B-14)
pO pO
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2
neglecting terms of the order of r /pi.

Force of the Earth on the Satellite

The gravitational potential of the earth at a given point can be
expressed in terms of the radial distance r from the earth's center and

the distance Ze from the equatorial plane as follows

G MS J,R
U =
r

Y (3-15)

where G is the universal gravitational constant, J2 is the coefficient
due to earth oblateness (J2 = 1.08219 x 10—3) and RO is the mean radius

of the earth. The force components in the r and z directions are found

by differentiation to be

_0U
Fr - At
GMEMs 3J2R§ SZé
T
T 2r T
and
;- 2
V2o
3GMEM J R2
_ s"2 0 -
= - B Zq (B-17)
T
Since
z, = (r - k.) (B-18)
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the force exerted by the

vector form by combining Egs.
GM_M 37.R? 5(r - k.)
7= S [1 720 < G~ _
Es 3 2 2
_ r 2r r
@l
+ r2 (r kG) kG

Force of the Sun on the Earth

The force F

b
gg can be expressed as

Fop = - REME Rg

where _
_ _ p
REzR _—o
v
Again, by a binomial expansion, FéE becomes
SR i 1l - S T
o 3 h 2
SE R Mo UR

neglecting terms of the order of DS/MR .

Force of the Moon on the Earth

In this case the force F

o is given by

earth on the satellite can be expressed in

(B-16) through (B-18) to give

1)] T

(B-19)

(B-20)

(B-21)

(B-22)

(B-23)
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Force of the Sun on the Moon

The force Egm is given by the relation

_ GMM
FS T 3 Rm
m R
m
where
§=E+<1-—1->—
m v o

These two relations can be expanded as before to give

— GMM 1_
= S“‘R+\1-l
Sm R3 v

~

o

&
1

3/ 1\ /= =\ =
269607

neglecting terms of the order of pg/Rz.

Force of the Earth on the Moon

In this case the force Fﬁm is given by the relation

MOTION OF THE MOON

Substitution for the forces on the right side of Egq.

(B-24)

(B-25)

(B-26)

(B-27)

(B-5) gives

the following equation for the motion of the moon relative to the earth:
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. G(ME + Mm) _
Po =~ 3 o
Po
GM
s [— 3 - - =
- = p - —(p. - R)R (B-28)
R3 [ ¥o R2 0
which can be simplified to
G( +M) _
= - __fg___ll_ (B-29)
o 3 o
%o

since the second term in Eq. (B-28) is less than one percent of the first
term.

Since it has been assumed that the moon rotates at a fixed angular
rate and at a constant distance from the earth, its acceleration is given
by

which together with Eq. (B-29) gives

éi GM_
_H-— = ——3 (B-31)
po
where P
Mp My
b= (B-32)
m

MOTION OF THE EARTH-MOON SYSTEM

In a similar manner, the forces in Eq. (B-7) can be eliminated to

give



_- GMS_
R=-—3R (B-33)
R

as the equation of motion for the center of mass of the earth-moon system.

Since this motion is also assumed to have a uniform angular rate, ®, and

a fixed value of R, the acceleration is given by
ot ° 20—
R=-07R (B-34)

which combined with Eq. (B-33) gives the following for the earth's or-

bital angular rate

GM
62 = -4 (B-35)
R

MOTION OF THE SATELLITE

Vector Equation of Motion

Substitution of the appropriate force expressions in Eq. (B-4) and

elimination of the quantities GM_, and GMm by mean of Eqs. (B-31) and

S

(B-35) give the following vector equation of motion for the satellite:

2
. GME 3J.R
- _ 205 ~— = .2 1Y =
r = - — (1 - —_— r2 (r . kG) - 1J) r

r3 2r2
3J2R(2) _ -
+ 5 (r - kG) kG
r
- @2[" - -32- G - R]
R
é2

e XGRR (8-36)
(o]
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which corresponds to Eq. (18).

Substitution of r;, Rr, and pozg for ;, R and Eg respectively in

1
Eq. (B-36) gives

2
. 33.RS AN
Y = % (1 - 22 [S(i - kG)2 - 1])1

2r
3J2R§ _
+ > (i - kG) kG
r
6T -33 -7 7, |
- ®7 i - 3(i rl) rlJ
62 _ ,
m [+ - T\NT
o i - 3 lm) lmJ (B-37)

The left side of Eq. (B-37) can also be expressed in the form

. 2— - dw
- _dr — dr o =
r = dtz + 2[“% X EE] + [—EE X r

+ [EO x [@ x ?]] (B-38)

where the derivatives on the right are relative to the x, y, z coordinate

system, and w is the angular velocity of the x, y, z system relative to

inertial space.
Substitution of ri for r in Eq. (B-38) gives
T = QEE'I +28E 75 x T+ r.iﬁé X i
* 2 at L% L dt
dt
+ r[(uh i) W - (ub . ub) i (B-39)
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Component Equation of Motion

If the I, ? and k components of Eqs. (37) and (39) are equated,

the following equations of motion are obtained

2 G
d = 2 N Mg
PRI e TS 5] = "2
3GMEJ R

R g, ]

52
- —M—“‘ [1 -3 - I)2] (B-40)
do  _
2 g% (w k) + r(d k) + r(w i) (w j) =
3GMJI,RT _
3 (ko - 1) (kg - )

+ 3r®.2(;l . I) (;1 . 3)

31

m

G DG D (B-41)
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.2 - - - -
+ 3r® (r1 - 1) (r1 - k)

3ré2
+ m

m (Ig - 1) (Zﬁ - k)

These three equations can be further simplified to

2
d - -2, = =2 Mg
S TR R I Ll [
dt = © r
3a RZ
20 [= = - 27
- ——7— |1 - 3k, * 1) J
2r

-1 - 3G - DY

1 - 3(?& . T)Z]

7|
|

(B-42)

(B-43)
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3r.9§l _ _ _ _
+ @ -DaE D (B-44)
- %dd—t [r @ j)] +r@ D @ - B =
3cMEJ2R§ L
- (kG * i) (kG + k)

r
+30°(, - D (&, - B
rl 1 rl

3ré2 _ -

i CUNEIES B GRS (B-45)

m

<+

Constraint Equation

In order that the xy plane always be the instantaneous orbit plane,
it is necessary that the vectors T and r both lie in this plane. The

vector r satisfies this condition since it is along the x axis by
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definition. In the case of r the following relation must be satisfied

(? - k) =0 (B-46)

which states that r is perpendicular to the z axis and thus lies in the

xy plane as desired.

Equation (B-46) can be simplified by combining it with the expression

dr

r = + [ub X 1] (B-47)
which gives
dr | ¢ S, xT1-E)= ]
<dt k)+<[“’oxr] k)=0 (B-48)

Substitution of ri for r reduces Eq. (B-48) to

ET-O+r@, - [TxE) =0 (B-49)

or

(w - j)=0 (B-50)

Complete Equations of Motion

By means of Eq. (B-50), the three equations, Eqs. (B-43), (B-44)

and (B-45), can be simplified to



(=9
2]

N

('u}o - 1) (EO

. E)] =

90

3r2é2 - - _
+—= (G - D G - D
2
_ s I RS
c k) = - (k, 1) (k, k)

(B-51)

(B-52)

(8-53)
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The three angular velocity components can be expressed by means

of Eq. (13) so that

(Eg S 1) = ¢ sin 6 sin o + o cos © (B-54)
(Eg + ) =4 cos 0 sin o - & sin © (B-55)
(Z% - k) = 6+ § cos w (B-56)

Substitution of Eqs. (B-54) through (B-56) into Egqs. (B-50) through

(B-53) gives

2 o G
é—% - r(8 + { cos a)z = - —SE
dt r
3GMEJ R2
- —EZ0 1 L ad - DY

2r

-1 - 3G, - DY

<2
rem - =2
- T [1 - 3(im * i) ] (B‘57)
d 2 . . 3GMEJ2R§ _ - _
T e+ ycosa)]=-—F——(k, 1) k,: i)

r
2:2 — = <
+ 3r'® (r1 - 1) (r1 c3)

3r2é2
m

+ (i -1 G -3 (B-58)
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3au I R2(k, - D) (K, - K) sin 8
b= - T
r5(6 + {§ cos @) sin «

30°(r, - D) (@, - K sin 0

+
(6 + § cos @) sin o

.2 — - = —
387(i - i) (i - k) sin 8
+ = (B-59)
w(8 + § cos @) sin «

2 = /T .
3GMEJ2RO(kG - i) (kG - k) cos ®

r5(9 + § cos )

3@26 - 1) (r, - k) cos @
N 1 1

(é + ¢ cos )

.2 - - = -
367(i - 1) (4 - k) cos 8§
L (B-60)
u(8 + ¢ cos a)

These four equations represent the desired equations of motion, and

the scalar products of the unit vectors can be evaluated by means of the

direction cosines given in Appendix A.
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Appendix C

OSCILLATORY AMPLITUDES

INTRODUCTION

In the main part of this Report, expressions are derived for @&,
the rate of change of orbital inclination, and &, the orbital regression
rate, in the form

2 - e = ,
3GMEJ2RO(kG . 1) (kG k) sin 8

rs(é + @ cos @) sin o

-2 = - = = .
30 (r1 . i) (rl . k) sin 8

(é + & cos o) sin o

L2 = - - -
30 (i - i) (i .+ k) sin 8
;o — (c-1)
w(8 + § cos o) sin o

2 — - -
3GMEJ2RO(kG . i) (kG - k) cos 6

rs(é + & cos @)

.2 — S -
30 (r1 - i) (r1 « k) cos ©

(é + @ cos @)

02 - - - -
37 (i_ - i) (i, * k) cos 8
" = (C-2)
L(8 + § cos o)

corresponding to Eqs. (37) and (38). 1It is also indicated in Eqs. (49)

and (50) that these expressions can be represented as
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127
s 1 Z
o= ¢o + EI;—EZ Bi cos wit (C-3)
i=1
and
127
o = Z A, sin Wt (C-4)
i=1

In this appendix the method of determining the quantities &O, Ai’

Bi and W, is indicated and the resulting expressions are tabulated.

METHOD OF COMPUTATION

If the scalar products on the right sides of Eqs. (C-1) and (C-2) are
evaluated by means of the direction cosines in Appendix A, the resulting
expressions can be expanded as a constant plus a summation of cosine terms
in the case of Eq. (C-1) and as a summation of sine terms in Eq. (C-2).

The arguments of these sine and cosine terms are in the form of
linear combinations of the angles 6, @, em, wm and ¢y, while their ampli-
tudes are functions of the angles o, o and @, as well as the coefficients
of the terms in Eqs. (C-1) and (C-2). If it is assumed that the oscillatory
variations of @ are small compared to its steady-state value, @o, then
the angle § on the right sides of Eqs. (C-1) and (C-2) can be replaced-
by @Ot. Similarly, if it is assumed that the oscillatory variations of
@ are small, then & can be replaced by its steady-state value, ao.

Finally, it is assumed that ﬁ is small compared to 6 so that the
term 6 + @ cos @ can be replaced by éo' Since the solution of Egs. (C-1)
and (C-2) for ¢y and o depends upon these assumptions, it is essential

that the resulting solutions verify the assumptions; if this were not
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the case, the method would be invalid. This aspect of the problem is
investigated in Appendix D.

If, in addition, the following substitutions are made

0=206t

(o]

® = Ot
(C-5)

o =6t

m m

IR

then Eqs. (C-1) and (C-2) take on the form indicated in Eqs. (C-3) and

(C-4) , where the w, values are linear combinations of the angular rates éo’

@, ém, ém and ¢o’ and the quantities ¢o’ Ai and Bi are functions of o

o and @ -
The right sides of Eqs. (C-1) and (C-2) each consist of three terms

arising from the effects of earth oblateness, the sun and the moon.

Thus, in the determination of @o as well as Ai and Bi’ the presence of

J, indicates an oblateness effect, while ® and Gm indicate solar and

2
lunar effects respectively. Actually, as will be seen, &o and some

of the Ai's and Bi's have contributions from all three.

ANALYTICAL EXPRESSIONS

Since the details of the actual analysis are rather lengthy, only
the resulting amplitudes and frequencies are given here. 1In presenting

these expressions it is convenient to make the following definitions:
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GMEJzRi
k===
B r
O
-2
-2 9
P=§@_ [1+——m.—2-(2~3sin201)} (2-3sin2011)
89 2u0 m
o
L2
+ 2K [2 - 3 sin"(\ - )]
.2
2 | 6
Q = é@— Ll + ——25 (2 - 3 sin2 o )] sin2 @y
86 2.0 o
(o]
L2
+ 2K sin () - al)
-2
392 |- O

' 2
= —— ' - 1 1
S 'L+ = (2 3 sin am)] sin 2 @

: L
860 2u0

- 2k sin 2(\ - al)

Steady-State Regression Rate

The summation of the constant terms in Eq. (C-1) gives

¥ = - P cos «
o o

(C-6)

(C-7)

(C-8)

(C-9)

—

(C-10)

and since P is inherently positive, wo is negative for direct orbits

(|d0| < 900).
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Oscillatory Amplitudes and Frequencies

Combination Terms. Those oscillations resulting from all three

of the perturbing influences have the following amplitudes and fre-

quencies.
wl - wo
A, = - S cos « = -
1 ° B1 S cos 2@0
w, = 2¢o
A = sin =
2 Q o B2 A2 cos o

3
%
A3 = - Q sin = sin o B3 = - A3
T 26o "~ Y
A, =S s'n2 32 (1 + 2 cos )
4 * 2 % B, = -4,
Wy = 290
A5 = - P sin o, cos a By = - AS
Y ~ 29o + 11’o
A, =8 cos2 32 (1 - 2 cos o) B = - A
6 2 o 6 6
w, = 260 + 2¢0
A, = cos2 32 si
7 Q 7 Sin o B7 = - A7

Solar Terms. Those terms arising from the solar effect only are

.2 .
as follows, where N represents © /90.
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11

12

13

20 - 2¢O
3 o
A8=-Z-Ncos TS].DQIO
3 4 %
B8 =3 N cos > sin 2Q/O
20 - 1110
o
- 3 2 .
A9——4Ncos 5 51r1c1r1 cos ozo
3 o
B9 = A N cos - sin afl cos 201o
20
Ag= O
_ 9 , 2 .
Blo- - 16 N sin oy sin ZQIO
20 + \yo
3 o
A11= - N sin > sin al cos ozo
B=—§-Nsin2a—'af 2
11 A 5 sin ] cos ao
20 + 2y
o @
A .= QN si 4 2 sin
127 4 ° Sim T simoay
oy
B12= 3 N sin 5 sin Z(yo
28 - 26 - 2§
o o o o
_ 3 -
A13-— A N sin > sin 3 sin ao
B13™ - 43
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14

15

16

17

26

14

14
28

15

15
28

16

16
29
(o}

17

17
26
(o}

18

18
26
[o]
19
19
29

20

20

-2 -

“+

3
ZN

- A

sin

14

o
2

, 2
n o

2

o 4

¥

2
- = N sin o
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L sin afl(l + cos ZQ/O) sin2 =

sin 2«
o

sin2 -2 sin o
2 o

sin cxl(l + 2 cos

sin 2«
o

o
2

== sin cyl(l - 2 cos Qfo) cos

2
cxo) sin

o
2
2

o
2
2
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S
il

26 + 29 + iy

21 o
3 . 2% 2 %
A21—4N sin” —= sin al(l - 2 cos a/o) cos” —=
Bor T -8
Wy, = 2B + 26 + 2§
_ 3 ,401 ao ;
AZZ_ZN sin —2—cos —2—81n ao
Byo = 8y

Lunar Terms. Those terms resulting entirely from the lunar effect

are as follows, where M represents éz/péo;
m

Wa3 = ¥y - 2V,

=3 . . .
A23 35 M sin 2am sin 2al sin Q/o
B =-iM sin 2 sin sin 2
23 32 MW SN Y %

3 .
A24 - 16 M sin 2am[(cos oy + cos 20/1) cos o

- sin o sin ozo]

3
2 -1—6M sin 2cym(cos o + cos 2&1) cos 2(1/0

=)
[]

W5 = ¥y -
Ays = 0
B =-iMs'n2 sin 2 sin 2
25 32 inoco, ¥y SN Lo,
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Wyg = Vo Y,

27

29

30

_ 3 ,
Ay = - 1g M sin 2am[(cos @ - cos 2011) cos o
- sin @ sin a/o]
B =—-3—Msin201(cosa - cos 2o.,) cos 2q
26 16 m 1 1 “o
© 4 o
1I“rm 21bo
_ 3 . .
A27 = -3 M sin 20{m sin 2a1 sin o,
_ 3 , . .
B27 = 33 M sin 2arm sin @ sin 2ao
2\];m - 2\1;0
_ 3 .2 %
A28 =-3 M sin am cos ) sin o:o
3 2 .
328 = 16 M sin o cos 5 sin 2010
29 - W,
A =—-§Msin os fl in co
29 3 a ¢ > sin o 5 o
B = -:i M sin cos -a—l sin cos 2
29~ ® St 4 2 oy %
qum
A30 =0
B, = - = M sin’ i in 2
30 39 sin” o sin o) sin 2o
2§+ ¥,
o
_ 3 ., 2 , 271 .
A31 = -3 M sin am sin 5 sin oy cos cxo
3 . 2 2%
B31 =-3 M sin cvm sin 5 sin ozl cos 20/0
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35

2y
32
32
28
33
33
29
34
34
26
35
35
29
36
36
26
37

37
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211;0
3y ein? L4t
8 sin o sin - in o
3 .2 4%
TE;M sin @ sin’ — sin 2ao
2y - 2y
--3-M ‘naa—ms’4a—-s'n

A si > sin > sin o
-3-M s'n4 O’—msin -C-yisin 2
8 o9 2 %
24, - Vg
3y eintm 2%
A sin 7 sin 7 sin o cos o
3, 0%, 2% )
A sin 7 sin > sin a; cos 2o
Z\ym
0

9 4 % .
- 16 M sin 5 sin al sin 2ao
2¢m + ‘ko
2- M sin4 SE cos2 ?—1- sin cos
4 2 2 9 %
3 4 % 2 ¢ .
A M sin - cos 2—s1n oy cos 2ao
Z\Vm + 2*0

o o

3 4 “m 4 1
A M sin 5 cos 5 sin cro
3 4% 4%
3 M sin 2 cos > sin 2c1ro



38

39

41

103

I - 2V
3 . 2 m
16 M sin > sin am sin 20:1 sin a
iM sinz?ﬂs'n sin sin 2
16 2 Sthooy s d %
LS

o

3 L2 m
3 M sin” — sin a/m[(cos @) - cos 2(1/1) cos o

- sin o sin cyo]
_3 M 'n2 ?ﬂ sin (co cos 2w,) cos 2
g M si 7 sin « (cos a; 8 20,) cos 2o

- -9—M sin2 ?ﬂ sin sin 2o, sin 2
16 2 “m 1 %

sin o [cos a, + cos 2qa,) cos o
m 1 o

1

- sin o, sin ao]

1

sin cym(cos o, + cos 2a1) cos 2cvo

1

3 2 ?E si sin 2 sin
16 7 Sy o) %
o

3 2 “m .
- =M sin — sin am sin o

16 2 sin 2q)

1

2¢0
- —3-M sin2 ozm sin2 dl sin ao

32

6%&- M sin2 o sin2 oy sin 2a0



48

29

A

44

26
m

45

45
26
46
46
29

47

47

26

48

48

26

49

49

+

It

104

o

9 . 2 .
35 M sin Qﬁ sin Zal cos ao

- —g-M sin2 o sin 2«

37 cos 2ao

1

9 .2 . 2 :
- M sin ah(Z - 3 sin al) sin 2ao

. 2 .
M sin o sin 2, cos ¢«
m 1 0

sin 2«., cos 2qo

2
32 %n 1

3y ein? . .
32 in Q/m sSin 011 sin Cto

3 2 . 2 ,
o M sin dm sin @y sin 2qo

Wm - 2\"o

3 2 % . .

- 1€ M cos > sin o sin 2«
o

2 "m , .
M cos — sin ¢ sin o sin 2¢g
2 m 1 o

1 sin o
=
16

¢m B &o
o

3 2
= M cos” == sin a [(cos o

3 5 + cos 2a1) cos o

1

- sin ¢, sin abj

1

2
- =M cos® = sin ah(cos o, + cos 201) cos 2ab

1



50

51

53

55

29

50

50

26

51

51

= 29

52

52

28

53

53

29

54

54

28

55

55

105

+¢m
=0

9 n
=T€M cos —i-SIH cym sin 2@1 sin 2a0
+¢m+\],o
=-3-M coszin-sin [(cos - cos 2w,)

8 2 Ut oy @) o8 a,

- sin o; sin (yo]

=2Mc 2-0[11- i ( 200, ) 2
8 os” 5 sin o (cos a; - cos 2ay) cos 2o
g+ 2¢o
=—3-M cos ﬁsin sin 2 sin

16 2 O SIR cqy sin A,
R T . —

Tg.M cos 5 sin o sin o) sin 2a
2y - 24
= - -3—M cos4 f—nl cosb' ﬂ sin

A 2 2 %
3 4 % A
-8Mcos 2c:s -7311120/
+2¢'rm-q,o
=-2Mco ?Ecozﬁsin co

A S 708 3 ¥y €o8 2,

o o

=2M cos —nlcosz—lsino{ cos 2¢

4 2 2 1 o
+2\j,m
= Q
=——9—Mco S(Es'n sin 2

16 s ety %



56

59

60

28
56
56

26

57

57
z'eo
58
58
26_
59
59
28

60

60
26

o)

61

61

106

2\bm+¢
3 cos® M gin? 2Ly
-7 cos —--sin —- sin oy cos o
-g-M 04?_’9_5.211_.11 cos 2
% cos 5 sin —= sin o, s 2o
29+ 2§
3y cos® g3t L g
A cos —- sin — sin a
3 4% 4%
'§M cos -2—51n Tsnn 20/0
26m-2\j; -2q;0
—§-M cosl*in—lsin4ﬁsinza—osina
4 2 2 2 o)
" Asg
20 —2¢m—¢o
o o

3 4 "m . 1 .
—8—M cos — sin = sin al(cos @ - cos 20/0)
" Agg
26m-2¢m

o

4 2
—'3%}4 cos Tmsin crl sin 2010
" 860

29m - Z\ym + \yo
o

4 2
éM cos = cos

3 5 5 sin afl(cos ao + cos 200)

" A6y



62

63

64

66

28
(o]

26

64

64
28
(o]
65
65
29

66

66
28

67

67

107

- 28 -2+ 24,

o o o
= E-M cos — cCOsS —=— COS 2 sin &
4 2 2 2 o
- A

62

ZQn ) 1]!m ) 211’o

o
3 m . .
- 16 M cos - sin am sin al(cos al + cos ao) sin ao
" Ae3
26 - % - ¥
m m o}
3 2 ¢
m o,
- 16 M cos - sin am[(cos al - cos 201) (cos @ - cos 2ao)
- sin @, sin ao]
" Agy
2em B wm
o
39 M cos - sin am sin 2a1 sin 2&0
" Aes

286 - &m + &o

m
o
3 2
- 16 M cos >
- Bee

—= sin am[(cos o

1

- sin o sin aO]

29m ) wm * 2¢é

3

16

- A

M cos

67

o

2

in ¢ sin & (cos @, + cos « sin o
st m 1( 1 o) o

+ cos 2al) (cos @ + cos 2&0)

—



68

71

73

24
68
68

26
69
69

26
70
70

20
71
71

2éo
72
72

2éo
73

73

29m - 2\1;0

- == M sin

20

2 M sin2

64

- A

26
m

m 11Io

69

108

. 2 2 o
@ sin o, sin -— sin @
m o

o sin 20 _(cos @ - cos 2o )
m 1 o o

9 . 2 . 2 .
- €7 M sin am(Z - 3 sin al) sin 2@0

- A

29m + ¢o

70

- Ji'M Sin2

64

- A

qu + 2¢0

32

- A

71

72

@ sin 2«a.(cos o + cos 2« )
m 1 o o

2
1 2

2em + q;m - 2\1.0

3
16

- A

- M sin2

73

o4
2

m ,
- s8in @ sin @ (cos «
m 1

1

9 2 . 2 o
—= M sin am sin o, cos — sin &
o

- cos & ) sin «
o o}



74

75

76

77

78

79

il

26
o]

74

74

28,
75
75

29

76

76

2éo
77
77

29

78

78
29

(o}

79

79

- Qem + U
- f% M sin
" Ay
26m + wm
9
) M sin
- Ags

1

an + wm +

= - —é-M sin

16

29m + ¢m + 2&0

a
3 . 2
- 16 M sin >
- Ay
29m + 2¢m - 2¢o
[¢ 4
3 m
- Z-M sin ?f cos
- Asg
20 + 2y - ¥
o
3 4 m
-8 M sin TT cos
= Agg

2

04

2

(¢}
&

2

109

sin « cos &
in m[(

sin ¢ sin 2«
m

=2 sin am[(cos a

sin @ sin @ (cos «
m 1

o

2

1 + cos 2al) (cos @ - cos 200)

- sin o sin ao]

sin 2o
1 o

| - cos 2a1) (cos ao + cos 2&0)

- sin o) sin ao]

- cos o sin &
1 o) (o}

sin al(cos @ - cos 2ao)



80

82

83

85

z'eo
80
80
2éo
81
81
26
82
82
zéo
83
83
z'eo
84
84
28
85

85

Zem + 24
- -g-M sin Q/—m sin @, sin 2¢

32 2 1 0
- Ago
zem + 2y + ¢o

3 Cl'm @
-3 M sin - sin” —= sin al(cos o + cos 2ch)
- Agy
26m + 2¢m + 21];0
-3-Ms' j.i‘-1-51n St-Lc c—)I—O-sin
z oS 2 2 %
- Agy
2¢m - 2¢ro

a @

3 2 4 71 . 2 "o
-3 M sin am sin - sin > sin aro
- Agy
9 - ¥
'9— M sin2 o i 2 ﬁ in & o 2
16 ', 8in 5= sin 1(cos ., - cos cro)
- Ags
qum

2 2 .

A M sin am sin ozl sin 2ao
- Ags

110



86

87

88

89

90

91

26
86

86
26
87
87
28
88
88
2éo

89

89
26
(o]
90
90
28
o

91

91

111

2\];m + ‘bo
3 2 o
16 M sin @ cos —= sin afl(cos oro + cos 20’0)
" Age
2\1:m + 2\1;0
2 4 ¢ 2 @
§ M sin O(m cos —él cos -50- sin alo
" Agy
‘hm B 2‘J!o
—3—M sin @ cos @ sin & (cos @, + cos @ ) sin &
16 m m 1 1 o o

3 .
ig M sin @ cos ozm[(cos @ - cos 20r1) (cos @ - cos 20'0)

- sin @, sin
1 ao]

89

9 . .
- == M sin & cos @ sin 2a
m m

35 sin 2ao

1
- A
90
by T ¥,
3
M sin a cos am[(cos @, + cos chl) (cos @+ cos 2cxo)

16

- sin o sin C(o]

91



92

96

97

20
O
92
92

20
o]
93

93

290

94
2'90
95
95
26

96

96
26
97

97

9

112

bt 2y,

;

16

1

A

m

A

6

92

M sin @ cos @ sin & (cos «
m m 1

93

3 . .
- =— M sin @ cos @ sin o, (cos &
m m 1

21110

1

‘irm-\.l’o

1

6

i

m

3

A

2

95

1

A

6

96

[¢ 4 o4
M sin @ cos m[(cos @y

- sin o

M sin @ cos a sin 2«
m m 1

+q’,o

sin @ cos « cos «
M si m m[( 1

1

+ cos @ ) sin o
o o}

- cos @ ) sin «
o o

sin ab]

sin 2«
o

- sin o) sin ao]

\j,m + 2\1}0

1

A

6

97

M sin @ cos @ sin o, (cos «
m m 1

1

- cos @ ) sin o
o o

- cos Zal) (cos @ - cos 2&0)

+ cos 2&1) (cos ao + cos 2&0)

—



113

98 o
4 ¢ a/o
A98 = - =M sin O{m cos > sin - sin <)!O
Bogg = = Agg
99 B 29o + 2\|fm - ‘l’o
3 2 2 %
A99 = - RM sin Q’m cos —- sin al(cos Cto - cos 20!0)
Bgg = = Agg
100 = 29, * 2,
_ 9 . 2 , 2 .
A100 YA M sin am sin Otl sin Zao
B100 = " 4100
101 - 29o + 2‘er + 1er
3 %
A101 = - T6 M sin am sin” —= sin orl(cos @ + cos 2(1/0)
B1o1 7 " Ao

Loz = 28, * 2V + 2§
A102 = %M sin2 am sinz+ le cos2 -az—o sin afo
Blo2 T 7 A0

103 2.eo + zém h 2\Lm i 2‘l}o
A103 =-7z M sinz+ gz— sin4 a—zl sin 017 sin &«
B = - A

103 103



114

®104 26o + 29m B va B llj0
o o
3 4 m . 2 "1 .
A101+ =3 M sin 5 sin — sin ozl(cos @ - cos 2(10)
Bioa = 7 A1o4
wos = 26, + 28 - 2y
A —-—g-Msin——sin . sin 2a
105 32 2 1 o
Bios =~ 4105
%106 = 29o + zem - 211’m + \ho
o (o3
_ 3 .4 Tm 2 71
A106 =3 M sin 5> cos” —= sin al(cos o + cos 2&/0)
Bioe = ™ 2106
W7 = 28, T 28, - 20, * 2¥,
o o o
=§_ . 4___[_[1 4 71 2 o _,
A107 A M sin 5 cos 5 cos - sin ao
Bio7 T " 4107
‘”108=29 + 26 - —2\1:0
o
A =iMSin2—Esina sin & (cos &, + cos @ ) sin «
108 ~ 16 2 m 1 1 o’ ST %
Bios = ~ %108 -
®109 = 26o + 26m - 1l'm - \bo
3 2 %n
Aigg = Tg ¥ sin & sin am[(cos @ - cos Zal) (cos o - cos 2 )
- sin cv1 sin cro]
B = - A



115

wllO = 26o + 26m - 11'm
9 2 %n
A110 = - 37 M sin -5 sin afm sin 2d1 sin 20‘0
B110 = " 210
W97 = 28, F 26, -0, b
o
A =-:2-M sinz—n—lsina[(cosaf + 2a.)
111 ~ 16 2 m p +cos 2a;) (cos &
+ cos Zao) - sin o sin ozo]
B T T A
w112 = 290 + 26rn - \bm + 211[0
A =-—3—Msin2—-ql-sina sin a_ (cos @, + cos & ) sin «@
112 16 2 m 1 1 o o
Bili2 T " Mo
w3 = 28, * 28, - 2Y,
9 2 2 2 %
A113 = - 37 M sin am sin cxl sin - sin ao
Bi13 T 7 A
wlllr - 26o + 26m - ‘Vo
A =-iM s'nza sin 2o (cos @ - cos 2a )
114 64 0 n 1 o o
Biia T 7 Mg
wllS = 280 + 26m
_ 9 . 2 2 .
A115 A M sin am(2 - 3 sin al) sin 20'0
B = - A

115 115



116

W1 = 28, 28 * ¥,
A =-—9-Ms'n2cv sin 2a_ (cos o + c 2¢ )
116 64 moQ, sin ey o 08 2%,
Bi16 =~ A116
W7 = 28, + 28 + 2¢,
117 32 sin Qm sin 1 cOSs 2 in o
Bi17 =~ 217
wi1g = 26, * 28, * U - 20,
¢ %
A =—iMcosz—Es'C¥s'a(osaf—oa’)’af
118 16 2 Sin &, sin &ic 1 7 €08 &) sin &
B11s8 ™ ~ A1s
w119 = zeo + 29m + ‘J’m - 11Io
3 2 ¢
= 2 _mo_ . -
Aj1g = 7 M cos 5 sin am[(cos @, + cos 2&1) (cos @ - cos 2c¥o)
- sin @; sin o/o]
Bl19 T 4119
W0 = 28, T 28+
A =-?-Mcoszfﬂsi a sin 2o, sin 2a
120 32 2 Sin &, st 1 %t o
Bioo T 7 2120
W91 = 28, t 28 Y+
[0 4
A =—3—Mcosz—msina[(co a, - cos 2a + 2
121 16 5 - s @ os 1) (cos o cos ao)
- sin o, sin cyo]
B = - A

121 121



117

(.0122 = 260 + ?_Gm + ‘bm + Zq;O
3 2 “n
A122 =< M cos - sin am sin al(cos .al - cos8 ao) sin O'o
Bio2 = ~ A122
®y 54 = 290 + 26m + 2¢m - 2\1:0
o o o
-3 b m o og% Lgin? 2
A123 = - 4Mcos 5 cos = sin 2 8in a'o
Bi23 = ~ A123
®y24 = 29o + zem + z‘hm - ‘bo
@
3 4 “m Y -
A124 = -3 M cos 7 €08 sin dl(cos @ - cos 2ao)
Biog =~ Arog
wgg = 28, + 20 + 2y
9 4 % . 2
A125 = - i—n cos — sin al sin 20'0
Bios = - A5
W T 28, ¥ 28 + 29, *+ 4,
o o
_ 3 4 m 271
Ale =" % M cos’ sin” —= sin al(cos @ + cos 20!0)
Bi26 = ~ 2126
u.)127 = 260 + 29m + Z\hm + 2‘#0
o o
_3 4 "m 4 2 "o
A127 4 M cos 3 sin 2 cos > sin Oto
B = - A






PRECEDING 119
PAGE BLANK

Appendix D

OSCILLATORY DEVIATIONS FROM STEADY-STATE REGRESSION

STATEMENT OF THE PROBLEM

In the body of this Report it is shown that under the influ-
ence of the assumed perturbing forces, a satellite orbit is subject to
a steady-state regression of the orbital plane. This motion is repre-
sented in Fig. 6 where the normal to the orbital plane traces out a
circle on the reference sphere at a constant angular rate.

Analytically, this motion is described by Egs. (51) and (52), where
it is seen that there are oscillatory terms superposed on the steady-
state solutions for o and y. It is pointed out in Appendix C that these
solutions for o and § are valid only if the oscillatory terms are small.
Therefore, this appendix investigates the magnitude of these residual

oscillations.

REFERENCE SYSTEM

To describe this oscillatory effect it is convenient to define an
X, Y coordinate system as shown in Fig. 26. This sytem moves in such
a way that the XY plane remains perpendicular to the steady-state or-
bital normal and also tangent to the reference sphere of Fig. 6. The
origin thus lies at the point of tangency, and the X axis remains tangeng-
to the steady-state Z axis trace of Fig. 6. In such a coordinate sys-
tem, any oscillatory components in either o or § results in a departure

of the instantaneous orbital normal from its steady-state position at

the origin of the X, Y system.
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Fig.26 — Reference system for oscillatory deviations of the orbit normal
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OSCILLATORY MOTION

In the expressions for o and | given by Eqs. (51) and (52), it is
assumed that at zero time all of the oscillatory components are in phase.
This can be generalized by introducing a new time origin at a time -~

and measuring time from this. Thus, Eqs. (51) and (52) are modified as

follows
127
- T M
o= o + /. o Leos w7 - cos wi(T + t)] (D-1)
i
i=1
127
- i _L - gi -
¥ = ¢Ot P = E: m [sin wi(T + t) sin wiT] (D-2)

By making T large, the phases of the various components are essentially
random since the frequencies are assumed to be incommensurable.
From Eqs. (D-1) and (D-2), the X, Y coordinates of the intersection

of the instaneous orbital normal with the XY plane are given by

X = (y - &ot) sin @

127 B

- i T - -

= z: o [sin wi(T + t) sin u&T] (D-3)
, i
=1

Y=o - ao

127

= Xw ﬁi [cos - cos w, (7t + t)] (D-4)
L, LEO% T i 0T

()
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An examination of the expressions for the w; values in Appendix C shows
that some of these can vanish for particular combinations of inclination
angle and orbital radius. Those frequencies which can become zero are

as follows

w, = 2&0

wyq = 20 + éo

Wy = 2+ 20
Wp3 &m i 2‘I’o
W4 T qjm - ¢o

Wy, = 2¢m - 2y

W9 ~ 24, - ¥

The contours in the rooo plane for which these frequencies vanish are
shown in Fig. 27.

When a particular w, does become very small, the amplitude of
the corresponding low-frequency oscillatory terms in Eqs. (D-1) and
(D-2) become large due to the l/u)i factor. However, the importance
of such terms depends on the period of time over which the motion
is observed. For this reason, in the determination of the effective
oscillatory amplitude an observation period, T, is defined, and the

magnitude of the effective oscillation depends on this value of T.
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LEAST-SQUARES FIT

After selecting a value for the interval T, a linear least~squares

fit, X, is determined for the function X over this interval in the form

127 127
N E: biott E: bi1 (D-5)
i=1 i=1
where
Bi wiT
bio = - [wiT - 2 sin _E_] sin w7 (D-6)
w, T
i
and
b [2 sin ———-- u)T cos ———J cos w, T (D-7)

The amplitudes of sin w, T and cos w, T in Eqs. (D-6) and (D-7) are shown
in Figs. 28 and 29.

The function X represents the average trend of the function X over
the interval between T -~ % and T + %. The mean-square deviation of X

from X is then given by

I
2
og=x [ x-%Pa
X T —
Y
2
2
+§ 127
1 \ i . . _
= E‘J‘ Z 3;)—-— [sin u)i("r + t) - sin u)i'T] - biO bilt dt
B IPUPTL
2
127 127

-3 % *

r=1 s=1
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where
X =BB[Acos(w - w) T
rs s T s
- Bsin w T sin w T - C cos w T cos W T (D-9)
T s T s
and
1 2 (u} } QE)T
A 20w L(w - w)T sin 2
r s T s
- 2 sin (QE . “g)T] : (D-10)
(w + w )T 2
T s
w T w T
B = 2 [2 sin —— sin S
2 2 .2 2 2
w w T
T S
® wST (u% + ug)T
- o sin _——_3_———_] (D-11)
T s
w T w T w T
C = S S [2 s'n.—ll— - T cos —E—] [2 sin =
3 3 &4 e I 2 2
w T
T s
ugT
- ugT cos _E—] (D-12)

In a similar manner the trend of the function Y can be determined as

127 127
Y = E: a, + t 2; a;q (D-13)
i=1 i=1
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where
Ai u)iT_1
a.. = 5 [wiT - 2 sin _E_J cos w, T (D-14)
w.T
i
and
12Ai wiT wiTj
a;; = :?;? [2 sin —5— - wiT cos _E_J sin w, T (D-15)
i

As before, the mean-square deviation of Y from Y is given by

3
2 1 ¢ =2
oy = 7 J [y - Y]” dt
- L
2
2
+ L1127
L2y A
= E-j |2 LE; (cos w; T - cos wi(T +t)] - a, - ailt] dt
-5 i=1
127 127
T L4 Yrs (D-16)
r=1 s=1
where
Y =AA [A cos(w_ - w ) T
rs s r s

- Bcos wTCOosS w T
r s

- C sin w T sin w T] (D-17)
T s
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COMBINED EFFECT

As a result of the X and Y variations described above, the total
steady-state displacement of the normal of the orbital plane from the

origin of the X, Y system is given by

127 2 127 9
o V(T 2 (T )

Since this quantity is a constant for the interval T, it can be absorbed
into the initial value of o and the initial value of the regression
angle wo. This amounts to shifting the origin of the X, Y system by
an amount Do'

However, there is still a steady drift rate of the orbital normal

relative to this new origin, which can be expressed as

127 S, 127 ;
Dy = ‘J<'§: ail) + <.E: bil> (D-19)

from which the total drift during the time interval T is given by

I
=)
e

AD 1 (D-20).

The mean-square deviation from this steady drift can be expressed

in terms of the components as

2 2, 2
o T % Ty
127 127
=y Z: X_ +7Y ) (D-21)
) rs rs

r=1 s=1



130

From Eqs. (D-9) and (D-17) the argument of Eq. (D-21) can be expressed

as
- [A-C éi] _
er + Yrs (ArAs + BrBs) L 2 + 2 Cos(wr uE)T
A-C A-B
+ (ArAs - BrBs) [ ) ] cos(u} + ug)T (D-22)

Thus, the deviation of the orbital regression from a steady-state
motion can be described by the drift, AD, and the deviation from this

drift, OD'

NUMERICAL RESULTS

In the determination of AD it is seen from Eqs. (D-7), (D-15), (D-19)
and (D-20) that AD is a function not only of the averaging interval T but
also the arbitrary time T. However, the result should be independent of
T, and it appears reasonable to replace cos wiT and sin wiT by their root-
mean-square value of 1/ 2 in the evaluation of 4D.

By means of the relations developed above, the value of AD can be
computed as a function of the orbital inclination angle of a synchronous
altitude satellite for values of T equal to 50, 100 and 500 years. The
results of these computations are shown in Fig. 30. It should be noted
that the summations are taken over only the twelve lowest frequency terms,

which are w,, w2 and w,, through w__. 1t is found that the contributions

1’ 2 23 32
of the terms whose frequencies involve Qm, ® and eo, are negligible. 1In

Fig. 30 it is seen that for values of T which are appreciably larger than

the oscillatory periods included, the values for AD are independent of
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T and less than .5°. However, as o approaches 90° the value of w, or
ZJO approaches zero. In this region of high inclination the summations
in Eq. (D-19) are dominated by the terms a1 and b21, which have the form
shown in Fig. 29. Thus, the fluctuations in Fig. 30 are simply a re-
flection of Fig. 29 plotted as a function of a . The magnitude of the
maximum at o = 90° increases with the averaging time, T.

For comparison, Fig. 31 shows the variation of AD for an orbital
radius of 4 earth radii and for T equal to 100 years. In this case,

several maxima exist, as would be expected from Fig. 27. The maximum

and approaching zero while

. o
at o, T 50" results from both Wo 97

23

. . . o R [¢)
gives a maximum at @ T 707 ; as before, w, causes a maximum at ao = 90

2
The maxima again are due to the dominance of the terms associated with
, o o}

the near-zero frequencies, and in the case of those at 50 and 70 the
form of Fig. 29 appears above and below the zero frequency position, re-
sulting in a symmetrical peak at each of these positions. As in the
previous case, these maxima are accentuated as T increases, while the
general level of the rest of the curve is relatively constant for values
of T greater than the oscillatory periods.

On the basis of Figs. 30 and 31 as well as other cases not shown

here, it is found that the general level of AD decreases as the orbital

altitude decreases. —

Mean-Square Deviation

In the determination of G; by means of Eqs. (D-21) and (D-22) it

2 , .
is again found that ~_ depends on T as well as T. However, examination

D
of the argument of Eq. (D-21) as expressed in Eq. (D-22) shows that the

maximum value of X + Y is given by
rs rs
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_ A-C A—B)
(er + Yrs)max - (ArAs + BrBs) < 2 + 2
A-C A—B>
+ (ArAS - BrBS) ( > 5 (D-23)

Thus, an upper bound on cg can be established by the relation

127 127
2
o':D < Z z (er + Yrs)max (D_24)

r=1 s=1

The mean-square deviation gg is evaluated as a function of the orbital
inclination of a synchronous altitude orbit for values of T equal to 50,
100 and 500 years. The results are shown in Fig. 32. The summations of
Eq. (D-24) are taken over the twelve lowest frequency terms, as in the
case of AD.

An examination of Fig. 32 shows that for all values of T the curves
are essentially the same for the lower values of @ - However, as o in-
creases, op 8oes through a maximum. The height of this maximum increases
with T, while the corresponding value of o approaches 900. As in the
case of AD this maximum results from the fact that w, is approaching zero

2

and the summation in Eq. (D-24) is dominated by the term (X22 + Y22)m5k'

Figure 33 represents the limiting curves for Eq. (D-22) when r = s. Thus,

the heévy portions of these curves represent (X,, + Y..) which appears
ii ii/max

in cg. A comparison of Fig. 33 and Fig. 32 shows that the maximum in
Fig. 32 is equivalent to a plot of Fig. 33 as a function of o for i = 2.

In view of the long solution time required to determine the curves

in Fig. 32, less detailed information is available for other orbital
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altitudes. However, it is found that the magnitude of gg decreases
with the orbital radius.

Figure 34 shows the details of the gg curve for an orbital radius
of 4 earth radii and an averaging time of 500 years for inclination
angles in the vicinity of = 50°. This corresponds to the region in
which both W4 and W, 5 vanish. It is seen that maxima occur on either
side of the value of @ for which the two frequencies vanish. The shape

of these maxima is also related to that shown in Fig. 33 for i = 24

and 27.

DISCUSSION
On the basis of the foregoing analysis, it is seen that the values

of both AD and oy increase with orbital radius. Since the highest radius
orbit considered here is that at synchronous altitude, Figs. 30 and 32
represent upper bounds for AD and SN respectively. An examination of
Figs. 30 and 32 shows that both the total drift and the root-mean-square
deviation are less than .5° as long as the averaging time is appreciably
larger than the periods of the oscillations included and if the orbital
inclination angle, @ s is less than about 75°. TFor orbital inclinations
between 75° and 900, significant peaks occur in the curves for both AD
and g Thus, the steady-state motion described by Eqs. (57) and (58)
is not valid at these high inclination angles where ¢ becomes very small.
As indicated previously, the behavior of these high-inclination orbits
is determined in Appendix F.

Thus, it is seen that for inclination angles up to about 75° the

. . &) . ey s
normal to the orbital plane deviates less than .5 from its position

as described by Eqs. (57) and (58). For an inclination greater than
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750, the regression may take place about the Xq axis as described in
Appendix F. Since these high-inclination orbits are of less interest,
the contributions of the residual oscillatory terms for this second

type of regression have not been evaluated. However, it does not appear
that any large oscillatory contribution would result since many of the

o)
A.l and Bi values vanish at an inclination of 90 .






PREGEEB%E%@ S

Appendix E

LUNAR REGRESSION

The satellite equations of motion developed in Appendix B should
also apply to the case of the earth's most prominent satellite, the
moon. However, as indicated earlier, it is necessary to go to a higher
order approximation of the solution before the moon's orbital regression
can be adequately described. The details of this determination are pre-

sented below.

MODIFICATION OF EQUATIONS OF MOTION

The general equations of motion of an earth satellite, including per-
turbations due to earth oblateness, the sun and the moon, are developed
in Appendix B as Eqs. (B-57) through (B-60). 1In applying these equations
to the case of the moon, a number of simplifcations can be made.

Of the three perturbations considered, the only significant one
in the case of the moon is that due to the sun. At the moon's altitude
the effect of earth oblateness is negligible, and the moon obviously
cannot act as a perturbing influence on itself. Thus, the right side of
Eqs. (B-57) through (B-60) should be modified by setting J., and Qn equal

2

to zero.
In the original development, the redction of the satellite on the
earth is neglected. However, this is not possible for a satellite
as large as the moon. Thus, in Eq. (B-57) it is necessary to replace
GME by G(ME + Mm).
An examination of Eq. (54) shows that since the earth oblateness

effect is negligible (J2 = 0), the angle o is zergp. Thus, the reference
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plane becomes the plane of the ecliptic, and the X o Yoo Zo and X Yqo

z, reference systems are identical.
Finally, it can also be assumed that the moon's orbital inclination
to the ecliptic is sufficiently small that cos o is unity while sin o

is equal to «.

Under the above assumptions, Eqs. (B-57) through (B-60) become

2 G + M
0. ow’ = - ﬁlE__z_rﬁ
dt o
- p@Z[l - 3(1 - rl)z] (E-1)
Lrofu] = 30%°G@, - D G - D (E-2)

22— R = .
_ 3® (r1 - 1) (r1 - k) sin 9

wy = ” (E-3)
wy = 3@2(;1 - 1) (;1 - k) cos 8 (E-4)

where
0= 6+ (E-5)

and r has been replaced by p.
By means of the direction cosines listed in Appendix A, the scalar

products can be expressed as

(ry - i) = cos(8 - ® + ¢) (E-6)
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- sin(8 - ® + §) (E-7)

~
H
'—l
(o
~—
il

(rl « k) = - o sin(® - {) (E-8)

Substitution of Eqs. (E-6) through (E-8) in Eqs. (E-1) through (E-4) gives

QEB _ 2 _ G(ME + Mm)

pw =

dt2 p2
.2 - 1
+-&%—L1+30032(8+¢—®)J’ (E-9)

2% = - 3 0% sin 2(6 + ¥ - ©) (E-10)

. 3®2

o= - _ET'Sin 6 sin(® - V) cos(® + ¢ - ®) (E-11)

: 362

o = - =o-a cos 8 sin(® - y)cos (B + ¢ - @) (E-12)

These expressions represent the desired equations of motion of the moon

relative to the earth as affected by solar perturbations.

METHOD OF SOLUTION

In the case of the moon, it is not possible to determine ¥ and &

by substituting the unperturbed values of 8 and w in Eqs. (E-11) and
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(E-12). 1Instead, it is necessary to take into account the effect of
perturbations in w and 6 on the equation for ¥ and @, which in turn
necessitates a solution for the perturbed in-plane motion as described

by Eqs. (E-9) and (E-10).

In-Plane Equations

If W represents the observed sidereal rate of the moon around the
earth, then the corresponding orbital radius in the absence of pertur-

bations is defined by the relation

3,G(ME + M)
_ m
po = —-—-—-—-———wz (E-13)

[e}

Substitution of Eq. (E-13) in Eq. (E-9) gives

32
2 P w .2 -
El_g._pwz=_ °g+-&2®—-[1+3cos(6+¢+®)_] (E-14)
dt p

as the form of the radial in-plane equation.

While Po and w, are the unperturbed solutions of Eqs. (E-10) and
(E-14), the quantities 6p and 6w represent the perturbations to these
solutions which occur due to the sun. By making the following substi-"

tutions in Eqs. (E-10) and (E-14),

o
[

po T 0P (E-15)

€
it

OR + Sw (E-16)
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® = At (E-17)
8+ ¢ = ubt (E-18)
w -8 =£ (E-19)

the following perturbation equations are obtained in terms of &p and

Sdw.
. 2
2 JRE) -
dop _ 5,2, - -2 [1 4+ e i,
5 3&66p 2pow06w 5 Ll 3 cos 2§tJ (E-20)
dt
2.2
3p ®
dép 2 déw _ o) . : _
Zubpo It + o, ~dt 5 sin 2€t (E-21)

The solution to these equations is given by

2
Sw . om (2 + m)-
- ) o) 1
op = [2<26po * % w > ) 2(1 - m) J

(0]

2p0m2(3 - m - mz)j

|

oy 6ub
+ cos w tj - \369 + 200 > + 2
° L © %o 3 - 8m + 4m

2
_ pm (2 - m)
o | (E-22)

- cos Zé’tf 5 J
= 6(L -m) (3 - 8m + 4m")
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and

o
S

4(1 - m)

of |

_[. 3 <26p + poéu%> + m2(5 + 4m) ]
L Py o W ]

26 6('Uo\ 2m2(3 - m - m2)]
) - 2

o 3 - 8m + 4m

+ 2 cos w tEJ; <3ép +
o'Le, o

+ cos 28t >
“4(1 - m) (3 - 8m + 4m”)

2 2. .
[ 3m (11 - 12m + 4m”™) J (E-23)

where m is the ratio of the earth's angular rate around the sun to the
moon's angular rate around the earth, and 690 and 6“5 are the initial
values of 86p and sw.

Since épo and 6&6 are arbitrary constants, they can be used to sim-
plify the above solution by setting the coefficient of cos ubt and the

constant term in Eq. (E-23) equal to zero as follows

poéub pomz(S + 4m)
26p_ + m = IO (E-24)

2p06wo 2p0m2(3 - m - m2)
36po + = 5 (E-25)
%o 3 - 8m + 4m

These two conditions reduce Eqs. (E-22) and (E-23) to

2
P m 3pom (2 - m) .
§p = - - cos 2Et (E-26)
2(1 - m) (3 - 8m + 4m")
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and

3wo(1l - 12m + 4m2)

sw = cos Zét (E-27)

4(1 - m) (3 - 8m + 4m2)

Substitution of these values of §p and §w in Eqs. (E-15) and (E-16)

gives the perturbed solutions for p and w as

2
2 19 :
p = po[l - %; - m <1 +-—€-m) cos 2§t} (E-28)
r 11 2 85 3 :
w = woLl + <7r m + 17 ™ cos 2§t] (E-29)

where powers of m greater than three are neglected in the expansion of

§p and Sw.

From Egqs. (E-=28) and (E-29) it is seen that as a result of the

choice of 6po and 6“6’ the perturbed solution still has the observed mean

orbital rate w . However, to achieve this, the mean orbital radius must

be less than the unperturbed radius by an amount pom2/6, which is of the

order of 220 mi.

Out-of-Plane Equations

Regression. It is now possible to determine the moon's regression

rate, @, by means of Eq. (E-11), which can be transformed into the follow-

ing form:

.2
\L-_—_%[l-cosZe-COSz(z@"l’)

+ cos 2(0 + ¢ - @)] (E-30)
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If @O and 5$ represent the steady-state and oscillatory components, re-

spectively, of the regression rate, then § can be represented as
o= b+ e (E-31)

and the problem reduces to a determination of &o from Eq. (E-30). Be-
fore this can be done, it is necessary to obtain expressions for the
quantities 0 and |y as functions of time as follows.

From Eq. (E-5), 0 can be expressed as

8= w-

w -y, + bw - By (E-32)

which can be integrated to give

0= (u, - ILO) t +Jr6wdt . j.éq}dt (E-33)

Since the quantities §w and &y by definition have no steady-state value,

their integrals will represent small oscillatory angles.

Similarly, the angle §y can be expressed as

Y= li'ot + Jf‘ sydt (E-34)

If Eqs. (E-17), (E-29), (E-32) and (E-34) are substituted in Eq. (E-30),

the following expression for @ is obtained to the order of m4
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2

. 3w m .
i--—2 [(1 S - - a®) cos 2w - ) ¢

- (1 - %mz) cos 2(® - d}o) t

11 2 .
+ (1 - - m ) cos 2(&6 -0t
11 2 Lo
+ | m cos 2(ub - 28 + ¢O) t
-r' o . ;_. ]f. _
ZLSln Z(QB wo) t + sin 2(® ¢o) t| [8ydt (E-35)

The values of ¢o and 8} can be determined by successive iterations of

Eq. (E-35) as follows. As a first approximation

3w m2

o= - —— - ad) (E-36)

while 6¢ is given by the remainder of Eq. (E-35), neglecting the

integral term

- 3w m .
by = - Z [— (1 - %% mz) cos 2(ub - ¢O) t

11 2 59 3 . .
- (1 - Zm -Ipm ) cos 2(® - wo) t

+ other oscillatory terms] (E-37)
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Integration of Eq. (E-37) gives

1 3 . . .
+ = (1 - n m) sin 2(® - wo) t
+ other oscillatory termsJ (E-38)

Substitution of Eq. (E-38) in Eq. (E-35) gives an improved determination

of @ in the form

3w m2
. 3 91 2
i--—— [a-gm-F)
+ oscillatory terms] (E-39)

A second iteration is not necessary since no additional terms of the order
b . . . .
of m arise in the steady-state regression rate. Thus, the regression

rate of the moon is given by
s 3 2
Vo = - “%[4 mo-3z™ T ™ (E-40)

which is identical with the expression determined in Ref. 3 using the
method of Delaunay.
By equating the steady-state parts of Eq. (E-5), the mean angular

rate 80 is obtained as

B = w - ¥, (E-41)
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which when combined with Eq. (E-40) gives

. 3 2 9 3 273 4
o oL 4 32 mos 128 n (E-42)

Since the angle 6 is measured from the line of nodes, the period associ-
ated with éo is the nodical period or the period between passages of
the ascending node, while the period associated with W is the sidereal

period as indicated previously. The relation of these two periods is

thus obtained from Eq. (E-42) as

_ 3.2 9 3 273 4
TS = TN[l + ZM™ -33Mm -5 MW (E-43)

Inclination. It is also possible to determine the variation in

orbital inclination by expanding Eq. (E-12) as follows

<2
B?Q? [sin 20 - sin 2(H - @ + )

+ sin 2(® - \u)] (E-44)
A comparison with Eq. (E-30) shows that the oscillatory amplitudes in -
Eq. (E-44) are reduced considerably by the factor o which is equal to
about .l rad. Thus, the determination of o is somewhat simpler than

that of | described above.

Equation (E-44) can be written in the form
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2
. 3w0m o .
¥ = - —— [Sln Z(ub - wo) t

Z
- sin Z(ub -9t
+ sin 2(® - wo) tJ (E-45)

where w is replaced by W and the terms in 6w and 6& are neglected.

Integration of Eq. (E-45) gives

3w m
o o) r 1 g
log 5; = - 3 Lw - & <l - cos 2(¢,O wo) t)
o o

- 1 <1 - cos Z(QB - @)t)
wo - "
o}

+ S — <l - cos 2(@ - $ ) t)] (E-46)

) . °

® -4

and since the terms on the right are small, Eq. (E-46) can be expressed:
2
to the order of m as

3m20

o= o - 80 [% <l - cos 2(® - ¢o) t)

- cos 2(u6 - ¢o) t

+ cos 2(u6 ) t] (E-&47)
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The constant term inside the bracket can be absorbed in Qb so that

3m Yy ri . .
@ = o + g L °°° 2(m - wo) t
+ cos Z(u% - wo) t - cos 2(&% - @) t] (E-48)

The first and largest of the oscillatory terms in Eq. (E-48) has an
amplitude of 3mao/8 or about 8.6 min of arc, while the other two have
amplitudes of about .6 min of arc.

Thus, it is seen that the inclination of the moon's orbit remains

essentially constant.
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Appendix F

REGRESSION OF HIGH INCLINATION ORBITS

INTRODUCTION

In the body of this Report, the solutions for the orbital inclination
angle, @, and orbital regression angle, |, are given by Eqs. (51) and (52).
In order to obtain these expressions it was assumed that where ¥ appears
on the right side of Eqs. (37) and (38) it can be replaced by iot. In
view of the fact that $o is proportional to the cosine of the inclination
angle, it becomes very small as the inclination approaches 90°. An exam-
ination of the resulting solution for ¥y given by Eq. (52) shows that under
these conditions the oscillatory terms are no longer negligible. Thus,
for high-inclination orbits, the above assumption does not hold. This is

indicated by the increase in the values of AD and o_ in the vicinity of

D
90° as shown in Figs. 30 and 32. While the assumption does appear to be
valid up to inclinations of the order of 750, it is of interest to in-

vestigate the behavior of higher inclination orbits.

METHOD OF ANALYSIS

If the substitution of @ot for ¢ is not made, then Eqs. (49) and (50)

can be written in the form

127
& = A1 sin y + A, sin 2y + E: A, sin ot (F-f;
i=3
& = éo + si; - [Bl cos § + B, cos 2y
127
+ Z B, cos wit:l (F-2)

i=3
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While ¢ is also present in the other oscillatory terms, it constitutes
a siowly varying phase angle of a higher frequency oscillation and can
be neglecfed. However, when it stands alone, as in the first two oscil-
latory terms, it mustkbe considered. An examination of the numerical
values of A and B shows that the summation terms in Eqs. (F-1) and (F-2)

are negligible, so that

Q.
I

Al sin §y + A

1 2 sin 2y (F-3)

-,
[l

&O + sii ” [Bl cos § + B, cos 2¢] (F-4)

If the reference plane is defined in the same manner as before to make

A1 and B1 zero, then Eqs. (F-3) and (F-4) can be expressed as

Q.
Il

Q sin o sin 2¢ (F-5)

<.
I

- (P - Q cos 2¢) cos «o (F-6)

where P and Q are defined by Eqs. (C-7) and (C-8) of Appendix C.

Combination of Eqs. (F-5) and (F-6) gives the relation

da _ Q sin o sin 2§ (517)
dy (P - Q cos 2¥)cos «
which can be integrated to give
P - Q cos 2¢O
sin o = sin o (F-8)
o VP - Q cos 2y
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as the functional relation between « and {. The quantities o and wo
represent the initial values of « and ¥, and, in accordance with Eqs. (51)

and (52), ¢O is equal to zero when @ equals ao. Thus, Eq. (F-8) becomes

sin o = sin o ‘/P ~ g ;03 %7 (F-9)

However, for the purposes of this analysis it is more convenient to select
A . o
the initial position when § is 90 and « has a value of aé. Under these

conditions, Eq. (F-8) becomes

. s ’ P+ Q -
sin o = sin do"/P TQ cos 2y (F-10)

4
while o and o are related by the expression

P-Q (F-11)

. z .
s1in = sin o
% o ¥? + 0

By means of Eq. (F-10), the trace of the normal to the orbital plane on
a unit sphere can be determined for any given value of aé. In Fig. 35,
several of these traces are shown for various orbital inclinations of a
synchronous altitude orbit. 1In this figure, the angle ¥ is measured in
the x_y., plane from the negative y1 axis while o« is the elevation angle

1°1
measured from the zy axis. It is seen that for values of aé up to about
o . -
75 the traces encircle the zy axis at a relatively constant value for

the inclination angle, o. This corresponds to the regression described

in the body of the report and pictured in Fig. 6.
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For values of ag such that

sin a; > o/ =28 (F-12)

the nature of the traces change and they become elongated ellipses which
encircle the 3 axis.

The boundaries between the two types of trace correspond to the con-

ditions

sin aé = %‘i‘% (F-13)
or a value aé = 78°53' for synchronous altitude orbits. The actual con-
tours lie in planes including the Yy axis and inclined at angles of
+11°7' to the XY, reference plane.

The periodicity of the motion corresponding to these traces can be
determined if the angle « is eliminated between Eqs. (F-6) and (F-10) to

give

& = _.‘/(P - Q cos 2¢) (P cos2 dé -Q sin2 a; - Q cos 2y) (F-14)

which can be solved for t in the form

e=- | dx (F-15)
g J(P - Q cos 2¢) (P cos2 cx(; - Q siri:2 cy(; - Q cos 2y)

By means of the transformations given in Ref. 4, Eq. (F-15) can be ex-

pressed as an elliptic integral of the first kind. The resulting
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expréssion for the period of the motion is given by the following equations.

e 7 P-Sg
If -sin @ < P T q° then
il
T = 4 f 2 do (F-16)
P2-Q2 cos Q/O, © Jl—k2 31n2<§
where
2 2Q 2
k™ = P - Q tan o (F-17)
. ’ P—g
If sin o > P+ Q
n
T = 4 2 dé (F-18)

. 4
VZQ(P + Q) sin % ° \/l - k2 sin2 ®

where

(F-19)

Thus, it is seen that the period given by Eq. (F-16) corresponds to thé&

more conventional regression about the z, axis while that given by Eq. (F-18)

1

is associated with the elongated elliptical traces of Fig. 35. A plot of

the regression period as a function of a; is shown in Fig. 36.
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RESULTS AND DISCUSSION

In the body of the Report it is shown that the XY, plane has the
property that an orbit in this plane would maintain its orientation
relative to inertial space. However, an examination of Fig. 35 shows
that a second stable configuration exists with the orbit in the Y123
plane. Since the earth's axis lies in this plane, such an orbit would
not only remain fixed relative to inertial space but would remain polar
relative to the earth. On the other hand, an orbit established in the
X%y plane is in unstable equilibrium and may regress about either the
x, or z; axis, depending on the direction of its initial disturbance.

In order to compare the regression periods determined by this method
with those shown in Fig. 7, it is necessary to express Eq. (F-16) in terms
of the inclination angle when § is equal to zero. This is done by com-

bining Eqs. (F-11) and (F-16) to give

ho

dé [ 1 ] (F-20)
\/1 - k2 sin2 3 (1 - %)‘Jl + 5_%96 cos2 o

T=3 > fz
Cosdoo

As compared with the expression

2m
T P cos a (F-21)

determined in the body of the Report as Eq. (62). Figure 37 is a plot
of Eqs. (F-20) and (F-21) for synchronous altitude orbits. It is seen

that the agreement is excellent up to large values of o -



Regression period (years)

300

250

200

150

100

50

163

Eq. (F-2I)
/

Eq. (F-20)

/
30 60
Orbital inclination a (deg)

(¥=0)

Fig. 37— Comparison of Eqs. (F-20) and (F -2l ) for regression period
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The maximum variation of orbital inclination during regression about
the él axis is equal to the difference between o and aé. This can be
seen in Fig. 35, where the aé values are indicated relative to the actual
position of the trace when it crosses the Y121 plane. It is seen that
the variation is relatively small, having reached a value of only 5° at
an inclination of 75°. Thus, the representation of this type of re-
gression by a conical motion of the normal to the orbital plane as shown
in Fig. 6 also appears to be valid as long as the regression is about
the zy axis.

The results obtained in this appendix are in excellent agreement

with those obtained in Ref. 5 by Allan and Cook who used eigenvalue

methods to determine the nature of the regression and its periodicity.
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